Preparation of self-healing membranes based on oxime carbamate bond by electrospinning method and application for oil-water separation

被引:0
|
作者
Chen, Xiangli [1 ]
Zhen, Yue [1 ]
Hu, Bo [2 ]
Li, Kangkang [1 ]
Wang, Yuxuan [1 ]
Tian, Peng [1 ]
Li, Tiancheng [1 ]
Guo, Haonan [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Key Lab Chem Addit China Natl Light Ind, Shaanxi Key Lab Chem Addit Ind, Xian 710021, Peoples R China
[2] Jiangxi Nonferrous Geol & Mineral Explorat & Dev I, Nanchang 330024, Jiangxi, Peoples R China
关键词
Oil-water separation membrane; Nanofiber membrane; Electrospinning; Oxime carbamate bond; OIL/WATER SEPARATION; TECHNOLOGY; STRATEGY; DESIGN;
D O I
10.1016/j.seppur.2025.131866
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cleanup of oily wastewater and crude oil spills is a global challenge. Traditional membrane materials are susceptible to physical and chemical damage during long-term use, affecting separation efficiency and service life. The introduction of self-healing technology helps to maintain the functionality of the membrane, reduce maintenance costs, and improve the sustainability of environmental management. In this paper, a compound PVUS with an oxime carbamate bond is reported. After mixing it with polyvinylidene fluoride (PVDF), a functional oil-water separation membrane is prepared by electrospinning technology. By adding the compound PVUS, the mechanical and thermodynamic properties of the nanofiber membrane were improved without changing the hydrophobicity of the membrane. The PVUS/PVDF nanofiber membranes have good oil-water separation ability, the separation efficiency of some organic solvents is above 98 %, and the oil flux is 4000-5600 L.m-2.h-1. At the same time, it is important that it also has a good separation effect on W/O emulsion. The membrane also has self-healing properties due to the presence of the oxime carbamate bond structure. The membrane retains its excellent flexibility and separation efficiency following a six-day exposure to a low temperature environment. In addition, it has excellent anti-fouling performance and good air permeability. Thus, the PVUS/PVDF nanofiber membranes provide insights and implications for advancing sustainable oil-water separation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Fabrication and characterization of superhydrophilic graphene-based electrospun membranes for efficient oil-water separation
    Francis, Lijo
    Mohammed, Shabin
    Hashaikeh, Raed
    Hilal, Nidal
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 54
  • [32] Recent Developments in Two-Dimensional Materials-Based Membranes for Oil-Water Separation
    Ezazi, Mohammadamin
    Quazi, M. M.
    MEMBRANES, 2023, 13 (07)
  • [33] Preparation of Halloysite-Based Superhydrophobic Aerogels for Oil-Water Separation
    Pan, Yue
    Zhu, Zhaoqi
    Li, Min
    Chen, Yanjun
    Cheng, Chenchen
    Wang, Mingxing
    Sun, Hanxue
    Li, An
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (17): : 10842 - 10852
  • [34] Preparation of Silica Nanosphere with Vertical Pore and Its Application in Oil-water Separation
    Hui Fan
    Yun Cai
    Ping Bai
    Qinwen Yuan
    Dong Wang
    Yuanli Chen
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2023, 38 : 299 - 303
  • [35] Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation
    Liu, Hongyu
    Yang, Lin
    Dou, Baojie
    Lan, Jianwu
    Shang, Jiaojiao
    Lin, Shaojian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 279
  • [36] Facile Preparation of Durable and Eco-Friendly Superhydrophobic Filter with Self-Healing Ability for Efficient Oil/Water Separation
    Voo, Wei Xin
    Chong, Woon Chan
    Teoh, Hui Chieh
    Lau, Woei Jye
    Chan, Yi Jing
    Chung, Ying Tao
    MEMBRANES, 2023, 13 (09)
  • [37] Self-Healing Graphene-Reinforced Composite for Highly Efficient Oil/Water Separation
    Cai, Yahui
    Chen, Dongyun
    Li, Najun
    Xu, Qingfeng
    Li, Hua
    He, Jinghui
    Lu, Jianmei
    LANGMUIR, 2019, 35 (43) : 13950 - 13957
  • [38] Bio-based superhydrophilic foam membranes for sustainable oil-water separation
    Chaudhary, Jai Prakash
    Nataraj, Sanna Kotrappanavar
    Gogda, Azaz
    Meena, Ramavatar
    GREEN CHEMISTRY, 2014, 16 (10) : 4552 - 4558
  • [39] Preparation of superhydrophobic cellulose aerogel sponge from waste paper and its application in oil-water separation
    Bahraminia, Soheil
    Anbia, Mansoor
    Mirzaei, Arezoo
    JOURNAL OF POROUS MATERIALS, 2024, 31 (04) : 1335 - 1350
  • [40] Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil-water separation
    Mansourizadeh, Amir
    Azad, Ali Javadi
    JOURNAL OF POLYMER RESEARCH, 2014, 21 (03)