Collaborative forecasting of influenza-like illness in Italy: The Influcast experience

被引:0
作者
Fiandrino, Stefania [1 ,2 ]
Bizzotto, Andrea [3 ,4 ]
Guzzetta, Giorgio [3 ]
Merler, Stefano [3 ]
Baldo, Federico [5 ,6 ,7 ]
Valdano, Eugenio [6 ,7 ]
Urdiales, Alberto Mateo [8 ]
Bella, Antonino [8 ]
Celino, Francesco [9 ]
Zino, Lorenzo [9 ]
Rizzo, Alessandro [9 ]
Li, Yuhan [10 ]
Perra, Nicola [10 ,11 ]
Gioannini, Corrado [1 ]
Milano, Paolo [1 ]
Paolotti, Daniela [1 ]
Quaggiotto, Marco [1 ,12 ]
Rossi, Luca [1 ]
Vismara, Ivan [1 ]
Vespignani, Alessandro [1 ,13 ]
Gozzi, Nicolo [1 ]
机构
[1] ISI Fdn, Turin, Italy
[2] Sapienza Univ Rome, Dept Comp Control & Management Engn Antonio Ruber, Rome, Italy
[3] Bruno Kessler Fdn, Ctr Hlth Emergencies, Trento, Italy
[4] Univ Trento, Dept Math, Trento, Italy
[5] Univ Bologna, Dept Comp Sci & Engn, Bologna, Italy
[6] INSERM, Inst Pierre Louis Epidemiol & Sante Publ, Site Hop St Antoine,27 rue Chaligny, F-75012 Paris, France
[7] Sorbonne Univ, Site Hop St Antoine,27 Rue Chaligny, F-75012 Paris, France
[8] Ist Super Sanita, Rome, Italy
[9] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[10] Queen Mary Univ London, Sch Math Sci, London, England
[11] Alan Turing Inst, London, England
[12] Politecn Milan, Dept Design, Milan, Italy
[13] Northeastern Univ, Lab Modeling Biol & Socio Tech Syst, Boston, MA USA
关键词
Forecasting; Influenza-like-illness; Ensemble;
D O I
10.1016/j.epidem.2025.100819
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Collaborative hubs that integrate multiple teams to generate ensemble projections and forecasts for shared targets are now regarded as state-of-the-art in epidemic predictive modeling. In this paper, we introduce Influcast, Italy's first epidemic forecasting hub for influenza-like illness. During the 2023/2024 winter season, Influcast provided 20 rounds of forecasts, involving five teams and eight models to predict influenza-like illness incidence up to four weeks in advance at the national and regional administrative level. The individual forecasts were synthesized into an ensemble and benchmarked against a baseline model. Across all models, the ensemble most frequently ranks among the top performers at the national level considering different metrics and forecasting rounds. Additionally, the ensemble outperforms the baseline and most individual models across all regions. Despite a decline in absolute performance over longer horizons, the ensemble model outperformed the baseline in all considered horizons. These findings show the importance of multimodel forecasting hubs in producing reliable short-term influenza-like illnesses forecasts that can inform public health preparedness and mitigation strategies.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] [Anonymous], 2019, World health organization-seasonal influenza
  • [2] [Anonymous], 2020, RespiVirNet data extracts
  • [3] [Anonymous], 2020, Sistema di sorveglianza integrata RespiVirNet, istituto superiore di sanita
  • [4] [Anonymous], 2024, InfluCast-web platform
  • [5] [Anonymous], 2024, InfluCast-github wiki
  • [6] Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge
    Biggerstaff, Matthew
    Alper, David
    Dredze, Mark
    Fox, Spencer
    Fung, Isaac Chun-Hai
    Hickmann, Kyle S.
    Lewis, Bryan
    Rosenfeld, Roni
    Shaman, Jeffrey
    Tsou, Ming-Hsiang
    Velardi, Paola
    Vespignani, Alessandro
    Finelli, Lyn
    [J]. BMC INFECTIOUS DISEASES, 2016, 16
  • [7] Bosse NI, 2024, Arxiv, DOI [arXiv:2205.07090, DOI 10.48550/ARXIV.2205.07090]
  • [8] Evaluating epidemic forecasts in an interval format
    Bracher, Johannes
    Ray, Evan L.
    Gneiting, Tilmann
    Reich, Nicholas G.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
  • [9] Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
    Cramer, Estee Y.
    Ray, Evan L.
    Lopez, Velma K.
    Bracher, Johannes
    Brennen, Andrea
    Rivadeneira, Alvaro J. Castro
    Gerding, Aaron
    Gneiting, Tilmann
    House, Katie H.
    Huang, Yuxin
    Jayawardena, Dasuni
    Kanji, Abdul H.
    Khandelwal, Ayush
    Le, Khoa
    Muhlemann, Anja
    Niemi, Jarad
    Shah, Apurv
    Stark, Ariane
    Wang, Yijin
    Wattanachit, Nutcha
    Zorn, Martha W.
    Gu, Youyang
    Jain, Sansiddh
    Bannur, Nayana
    Deva, Ayush
    Kulkarni, Mihir
    Merugu, Srujana
    Raval, Alpan
    Shingi, Siddhant
    Tiwari, Avtansh
    White, Jerome
    Abernethy, Neil F.
    Woody, Spencer
    Dahan, Maytal
    Fox, Spencer
    Gaither, Kelly
    Lachmann, Michael
    Meyers, Lauren Ancel
    Scott, James G.
    Tec, Mauricio
    Srivastava, Ajitesh
    George, Glover E.
    Cegan, Jeffrey C.
    Dettwiller, Ian D.
    England, William P.
    Farthing, Matthew W.
    Hunter, Robert H.
    Lafferty, Brandon
    Linkov, Igor
    Mayo, Michael L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (15)
  • [10] Summary results of the 2014-2015 DARPA Chikungunya challenge
    Del Valle, Sara Y.
    McMahon, Benjamin H.
    Asher, Jason
    Hatchett, Richard
    Lega, Joceline C.
    Brown, Heidi E.
    Leany, Mark E.
    Pantazis, Yannis
    Roberts, David J.
    Moore, Sean
    Peterson, A. Townsend
    Escobar, Luis E.
    Qiao, Huijie
    Hengartner, Nicholas W.
    Mukundan, Harshini
    [J]. BMC INFECTIOUS DISEASES, 2018, 18