An Algebraic Preconditioner for the Exactly Divergence-Free Discontinuous Galerkin Method for Stokes

被引:0
|
作者
Rhebergen, Sander [1 ]
Southworth, Ben S. [2 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
[2] Los Alamos Natl Lab, Los Alamos, NM USA
基金
加拿大自然科学与工程研究理事会;
关键词
discontinuous Galerkin; hybridization; preconditioning; Stokes equations; FINITE-ELEMENT METHODS; H(DIV);
D O I
10.1002/num.70001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algebraic preconditioner for the exactly divergence-free discontinuous Galerkin (DG) discretization of Cockburn, Kanschat, and Sch & ouml;tzau [J. Sci. Comput., 31 (2007), pp. 61-73] and Wang and Ye [SIAM J. Numer. Anal., 45 (2007), pp. 1269-1286] for the Stokes problem. The exactly divergence-free DG method uses finite elements that use an H(div)$$ H\left(\operatorname{div}\right) $$-conforming basis, thereby significantly complicating its solution by iterative methods. Several preconditioners for this Stokes discretization has been developed, but each is based on specialized solvers or decompositions. To avoid requiring custom solvers, we hybridize the H(div)$$ H\left(\operatorname{div}\right) $$-conforming finite element so that the velocity lives in a standard L2$$ {L}<^>2 $$-DG space, and present a simple algebraic preconditioner for the extended hybridized system. The proposed preconditioner is optimal in mesh size h$$ h $$, effective in 2d and 3d, and only relies on standard relaxation and algebraic multigrid methods available in many packages. Furthermore, the Schur complement approximation is robust in element order k$$ k $$, although more AMG cycles are needed on the velocity block when increasing k$$ k $$.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] STABILITY ANALYSIS AND ERROR ESTIMATES OF AN EXACTLY DIVERGENCE-FREE METHOD FOR THE MAGNETIC INDUCTION EQUATIONS
    Yang, He
    Li, Fengyan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04): : 965 - 993
  • [42] A multilevel preconditioner for the interior penalty discontinuous Galerkin method
    Brix, Kolja
    Pinto, Martin Campos
    Dahmen, Wolfgang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2742 - 2768
  • [43] On locally divergence -free discontinuous Galerkin methods
    Brown University
    1600, (2004):
  • [44] The divergence-free nonconforming virtual element method for the Navier-Stokes problem
    Zhang, Bei
    Zhao, Jikun
    Li, Meng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1977 - 1995
  • [45] A contraction property of an adaptive divergence-conforming discontinuous Galerkin method for the Stokes problem
    Sharma, Natasha
    Kanschat, Guido
    JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (04) : 209 - 232
  • [46] Divergence-Free Virtual Element Method for the Stokes Equations with Damping on Polygonal Meshes
    Xiong, Yu
    Chen, Yanping
    Zhou, Jianwei
    Liang, Qin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024, 17 (01): : 210 - 242
  • [47] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [48] DIVERGENCE-FREE KERNEL METHODS FOR APPROXIMATING THE STOKES PROBLEM
    Wendland, Holger
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 3158 - 3179
  • [49] Conforming and divergence-free Stokes elements in three dimensions
    Guzman, Johnny
    Neilan, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1489 - 1508
  • [50] A SCALABLE PRECONDITIONER FOR A PRIMAL DISCONTINUOUS PETROV-GALERKIN METHOD
    Barker, A. T.
    Dobrev, V.
    Gopalakrishnan, J.
    Kolev, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1187 - A1203