Ion transport behaviors in MXenes for electrochemical energy storage and conversion

被引:0
|
作者
Fei, Ling [1 ,2 ]
Lei, Lei [1 ]
Xu, Hui [3 ]
Guo, Xinghua [1 ]
Chen, Bo [1 ]
Han, Xu [1 ]
Chen, Xun [4 ]
Huang, Qing [1 ,2 ]
Wang, Degao [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Key Lab Data Driven High Safety Energy Ma, Ningbo Key Lab Special Energy Mat & Chem, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Huzhou Coll, Sch Intelligent Mfg, Huzhou Key Lab Green Energy Mat & Battery Cascade, Huzhou, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn NIMTE, Lab Polymers & Composites, Ningbo, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Adv Interdisciplinary Sci Res AIR Ctr, Ningbo, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; reduction; ion transport; MXenes; storage batteries; supercapacitors; water splitting; HYDROGEN EVOLUTION; TI3C2TX MXENE; ELECTRONIC-PROPERTIES; CATION INTERCALATION; OXYGEN EVOLUTION; STRUCTURE DESIGN; EFFICIENT; CARBIDE; PERFORMANCE; NANOSHEETS;
D O I
10.1002/cey2.678
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MXenes, an innovative class of two-dimensional (2D) materials composed of transition-metal carbides and/or nitrides, have garnered significant interest for their potential in energy storage and conversion applications, which is largely attributed to their modifiable surface terminations, exceptional conductivity, and favorable hydrophilic characteristics. MXenes show various ion transport behaviors in applications like electrochemical catalysis, supercapacitors, and batteries, encompassing processes like electrostatic adsorption of surface ions, redox reactions of ions, and interlayer ion shuttle. This review aims to present a summary of advancements in the comprehension of ion transport behaviors of Ti3C2Tx MXenes. First, the composition, properties, and synthesis techniques of MXenes are concisely summarized. Subsequently, the discussion delves into the mechanisms of ion transport in MXenes during CO2 reduction, water splitting, supercapacitor operation, and battery performance, elucidating the factors determining the electrochemical behaviors and efficacy. Furthermore, a compilation of strategies used to optimize ion transport behaviors in MXenes is presented. The article concludes by presenting the challenges and opportunities for these fields to facilitate the continued progress of MXenes in energy-related technologies.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors-A review
    Baig, Mutawara Mahmood
    Gul, Iftikhar Hussain
    Baig, Sherjeel Mahmood
    Shahzad, Faisal
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 904
  • [42] Unleashing the potential of it-conjugation in organic framework materials for electrochemical energy storage and conversion
    Zhu, Rongmei
    Liu, Limei
    Zhang, Guangxun
    Xu, Yuanhang
    Gu, Yijing
    Pang, Huan
    COORDINATION CHEMISTRY REVIEWS, 2025, 532
  • [43] Two-dimensional MXenes for energy storage
    Sun, Shuijing
    Liao, Chan
    Hafez, Ahmed M.
    Zhu, Hongli
    Wu, Songping
    CHEMICAL ENGINEERING JOURNAL, 2018, 338 : 27 - 45
  • [44] Partially oxidized MXenes for energy storage applications
    Hussain, Iftikhar
    Bibi, Faiza
    Pandiyarajan, Sabarison
    Hanan, Abdul
    Chuang, Ho-Chiao
    Zhang, Kaili
    PROGRESS IN MATERIALS SCIENCE, 2025, 147
  • [45] i-MXenes for Energy Storage and Catalysis
    Ahmed, Bilal
    El Ghazaly, Ahmed
    Rosen, Johanna
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (47)
  • [46] Flexible MXenes for printing energy storage devices
    Hussain, Iftikhar
    Kewate, Onkar Jaywant
    Sahoo, Sumanta
    Aftab, Sikandar
    Rosaiah, P.
    Ahmad, Muhammad
    Hanif, Muhammad Bilal
    Al Zoubi, Wail
    Ajmal, Zeeshan
    Ul Arifeen, Waqas
    Ansari, Mohd Zahid
    Akkinepally, Bhargav
    Zhang, Kaili
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [47] New carbon for electrochemical energy storage and conversion
    Liang, Xinqi
    Chen, Minghua
    Pan, Guoxiang
    Wu, Jianbo
    Xia, Xinhui
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (04)
  • [48] Multiscale nanomaterials for electrochemical energy storage and conversion
    Xia, Xinhui
    Shen, Shenghui
    Lu, Xihong
    Xia, Hui
    MATERIALS RESEARCH BULLETIN, 2017, 96 : 297 - 300
  • [49] Heteroatom doping in 2D MXenes for energy storage/ conversion applications
    Sahoo, Sumanta
    Kumar, Rajesh
    Hussain, Iftikhar
    Zhang, Kaili
    ADVANCED POWDER MATERIALS, 2024, 3 (06):
  • [50] Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
    Li, Gao-Ren
    Xu, Han
    Lu, Xue-Feng
    Feng, Jin-Xian
    Tong, Ye-Xiang
    Su, Cheng-Yong
    NANOSCALE, 2013, 5 (10) : 4056 - 4069