Ion transport behaviors in MXenes for electrochemical energy storage and conversion

被引:0
|
作者
Fei, Ling [1 ,2 ]
Lei, Lei [1 ]
Xu, Hui [3 ]
Guo, Xinghua [1 ]
Chen, Bo [1 ]
Han, Xu [1 ]
Chen, Xun [4 ]
Huang, Qing [1 ,2 ]
Wang, Degao [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Key Lab Data Driven High Safety Energy Ma, Ningbo Key Lab Special Energy Mat & Chem, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Huzhou Coll, Sch Intelligent Mfg, Huzhou Key Lab Green Energy Mat & Battery Cascade, Huzhou, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn NIMTE, Lab Polymers & Composites, Ningbo, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Adv Interdisciplinary Sci Res AIR Ctr, Ningbo, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CO2; reduction; ion transport; MXenes; storage batteries; supercapacitors; water splitting; HYDROGEN EVOLUTION; TI3C2TX MXENE; ELECTRONIC-PROPERTIES; CATION INTERCALATION; OXYGEN EVOLUTION; STRUCTURE DESIGN; EFFICIENT; CARBIDE; PERFORMANCE; NANOSHEETS;
D O I
10.1002/cey2.678
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MXenes, an innovative class of two-dimensional (2D) materials composed of transition-metal carbides and/or nitrides, have garnered significant interest for their potential in energy storage and conversion applications, which is largely attributed to their modifiable surface terminations, exceptional conductivity, and favorable hydrophilic characteristics. MXenes show various ion transport behaviors in applications like electrochemical catalysis, supercapacitors, and batteries, encompassing processes like electrostatic adsorption of surface ions, redox reactions of ions, and interlayer ion shuttle. This review aims to present a summary of advancements in the comprehension of ion transport behaviors of Ti3C2Tx MXenes. First, the composition, properties, and synthesis techniques of MXenes are concisely summarized. Subsequently, the discussion delves into the mechanisms of ion transport in MXenes during CO2 reduction, water splitting, supercapacitor operation, and battery performance, elucidating the factors determining the electrochemical behaviors and efficacy. Furthermore, a compilation of strategies used to optimize ion transport behaviors in MXenes is presented. The article concludes by presenting the challenges and opportunities for these fields to facilitate the continued progress of MXenes in energy-related technologies.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Manipulation on Two-Dimensional Amorphous Nanomaterials for Enhanced Electrochemical Energy Storage and Conversion
    Liu, Juzhe
    Hao, Rui
    Jia, Binbin
    Zhao, Hewei
    Guo, Lin
    NANOMATERIALS, 2021, 11 (12)
  • [22] Dynamic Electrochemical Interfaces for Energy Conversion and Storage
    Shin, Heejong
    Yoo, Ji Mun
    Sung, Yung-Eun
    Chung, Dong Young
    JACS AU, 2022, 2 (10): : 2222 - 2234
  • [23] Emerging electrochemical energy conversion and storage technologies
    Badwal, Sukhvinder P. S.
    Giddey, Sarbjit S.
    Munnings, Christopher
    Bhatt, Anand I.
    Hollenkamp, Anthony F.
    FRONTIERS IN CHEMISTRY, 2014, 2
  • [24] Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage
    Yan, Yuxing
    Chen, Guangrui
    She, Peihong
    Zhong, Guiyuan
    Yan, Wenfu
    Guan, Bu Yuan
    Yamauchi, Yusuke
    ADVANCED MATERIALS, 2020, 32 (44)
  • [25] Challenges and doubts of electrochemical energy conversion and storage
    Dekanski, Aleksandar
    HEMIJSKA INDUSTRIJA, 2022, 76 (01) : 43 - 54
  • [26] Frontiers of MXenes-based hybrid materials for energy storage and conversion applications
    Bhat, Md. Yasir
    Adeosun, Waheed A.
    Prenger, Kaitlyn
    Samad, Yarjan Abdul
    Liao, Kin
    Naguib, Michael
    Mao, Samuel
    Qurashi, Ahsanulhaq
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
  • [27] MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review
    Sharma, Sunil Kumar
    Kumar, Amit
    Sharma, Gaurav
    Vo, Dai-Viet N.
    Garcia-Penas, Alberto
    Moradi, Omid
    Sillanpaa, Mika
    CHEMOSPHERE, 2022, 291
  • [28] Interface and surface engineering of MXenes and COFs for energy storage and conversion
    Hussain, Iftikhar
    Kathiresan, Murugavel
    Singh, Karanpal
    Kalidasan, B.
    Mendhe, Avinash C.
    Islam, Mohammad Nahidul
    Meng, Kejuan
    Aslam, Muhammad Kashif
    Hanif, Muhammad Bilal
    Al Zoubi, Wail
    Zhang, Kaili
    INFOMAT, 2025,
  • [29] Single-Atom Sites on MXenes for Energy Conversion and Storage
    Cui, Yanglansen
    Cao, Zhenjiang
    Zhang, Yongzheng
    Chen, Hao
    Gu, Jianan
    Du, Zhiguo
    Shi, Yongzheng
    Li, Bin
    Yang, Shubin
    SMALL SCIENCE, 2021, 1 (06):
  • [30] Emerging high-entropy compounds for electrochemical energy storage and conversion
    Liu, Da
    Guo, Peifang
    Pan, Hongge
    Wu, Renbing
    PROGRESS IN MATERIALS SCIENCE, 2024, 145