Self-Supervised Medical Image Segmentation Using Deep Reinforced Adaptive Masking

被引:1
|
作者
Xu, Zhenghua [1 ]
Liu, Yunxin [1 ]
Xu, Gang [2 ]
Lukasiewicz, Thomas [3 ,4 ]
机构
[1] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
[3] Univ Oxford, Dept Comp Sci, Oxford OX1 3QG, England
[4] Vienna Univ Technol, Inst Log & Computat, A-1040 Vienna, Austria
基金
中国国家自然科学基金;
关键词
Biomedical imaging; Image reconstruction; Image segmentation; Task analysis; Adaptation models; Self-supervised learning; Training; medical image segmentation; adaptive image masking; deep reinforcement learning;
D O I
10.1109/TMI.2024.3436608
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Self-supervised learning aims to learn transferable representations from unlabeled data for downstream tasks. Inspired by masked language modeling in natural language processing, masked image modeling (MIM) has achieved certain success in the field of computer vision, but its effectiveness in medical images remains unsatisfactory. This is mainly due to the high redundancy and small discriminative regions in medical images compared to natural images. Therefore, this paper proposes an adaptive hard masking (AHM) approach based on deep reinforcement learning to expand the application of MIM in medical images. Unlike predefined random masks, AHM uses an asynchronous advantage actor-critic (A3C) model to predict reconstruction loss for each patch, enabling the model to learn where masking is valuable. By optimizing the non-differentiable sampling process using reinforcement learning, AHM enhances the understanding of key regions, thereby improving downstream task performance. Experimental results on two medical image datasets demonstrate that AHM outperforms state-of-the-art methods. Additional experiments under various settings validate the effectiveness of AHM in constructing masked images.
引用
收藏
页码:180 / 193
页数:14
相关论文
共 50 条
  • [1] Adaptive-Masking Policy with Deep Reinforcement Learning for Self-Supervised Medical Image Segmentation
    Xu, Gang
    Wang, Shengxin
    Lukasiewicz, Thomas
    Xu, Zhenghua
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2285 - 2290
  • [2] Self-Supervised Interactive Image Segmentation
    Shi, Qingxuan
    Li, Yihang
    Di, Huijun
    Wu, Enyi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 6797 - 6808
  • [3] Self-Supervised Learning for Few-Shot Medical Image Segmentation
    Ouyang, Cheng
    Biffi, Carlo
    Chen, Chen
    Kart, Turkay
    Qiu, Huaqi
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (07) : 1837 - 1848
  • [4] Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation
    Rettenberger, Luca
    Schilling, Marcel
    Elser, Stefan
    Bohland, Moritz
    Reischl, Markus
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023, 70 (09) : 2519 - 2528
  • [5] FedATA: Adaptive attention aggregation for federated self-supervised medical image segmentation
    Dai, Jian
    Wu, Hao
    Liu, Huan
    Yu, Liheng
    Hu, Xing
    Liu, Xiao
    Geng, Daoying
    NEUROCOMPUTING, 2025, 613
  • [6] Federated Cross-Incremental Self-Supervised Learning for Medical Image Segmentation
    Zhang, Fan
    Liu, Huiying
    Cai, Qing
    Feng, Chun-Mei
    Wang, Binglu
    Wang, Shanshan
    Dong, Junyu
    Zhang, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [7] Self-Supervised Learning Based on Spatial Awareness for Medical Image Analysis
    Nguyen, Xuan-Bac
    Lee, Guee Sang
    Kim, Soo Hyung
    Yang, Hyung Jeong
    IEEE ACCESS, 2020, 8 (08): : 162973 - 162981
  • [8] Self-Supervised Deep TripleNet for Video Object Segmentation
    Xu, Kai
    Wen, Longyin
    Li, Guorong
    Huang, Qingming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3530 - 3539
  • [9] A Spatial Guided Self-supervised Clustering Network for Medical Image Segmentation
    Ahn, Euijoon
    Feng, Dagan
    Kim, Jinman
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 379 - 388
  • [10] DeSD: Self-Supervised Learning with Deep Self-Distillation for 3D Medical Image Segmentation
    Ye, Yiwen
    Zhang, Jianpeng
    Chen, Ziyang
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT IV, 2022, 13434 : 545 - 555