The breather, breather-positon, rogue wave for the reverse space-time nonlocal short pulse equation in nonzero background

被引:1
作者
Shan, Jiaqing [1 ]
Li, Maohua [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
关键词
Reverse space-time nonlocal short pulse equation; Degenerate Darboux transformation; Breather-positon; Rogue wave; Nonzero background; COMPLEX SHORT-PULSE; DETERMINANT REPRESENTATION; DARBOUX TRANSFORMATION; SMOOTH POSITONS; KDV EQUATIONS; REAL;
D O I
10.1016/j.wavemoti.2024.103448
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, by using the Darboux transformation (DT), two types of breather solutions for the reverse space-time (RST) nonlocal short pulse equation are constructed in nonzero background: bounded and unbounded breather solutions. The degenerate DT is obtained by taking the limit of eigenvalues and performing a higher-order Taylor expansion. Then the N order breather-positon solutions are generated through degenerate DT. Some properties of the breather-positon solutions are discussed. Furthermore, rogue wave solutions are derived through the degeneration of breather-positon solutions.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]   SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS [J].
ABLOWITZ, MJ ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2180-2186
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION [J].
BEUTLER, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :3098-3109
[6]   The bi-Hamiltonian structure of the short pulse equation [J].
Brunelli, J. C. .
PHYSICS LETTERS A, 2006, 353 (06) :475-478
[7]   Nonlocal Short Pulse Equations [J].
Brunelli, J. C. .
BRAZILIAN JOURNAL OF PHYSICS, 2018, 48 (04) :421-425
[8]   The short pulse hierarchy [J].
Brunelli, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)
[9]   Covariant hodograph transformations between nonlocal short pulse models and the AKNS(-1) system [J].
Chen, Kui ;
Liu, Shimin ;
Zhang, Da-jun .
APPLIED MATHEMATICS LETTERS, 2019, 88 :230-236
[10]   Ultra-short pulses in linear and nonlinear media [J].
Chung, Y ;
Jones, CKRT ;
Schäfer, T ;
Wayne, CE .
NONLINEARITY, 2005, 18 (03) :1351-1374