Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US

被引:0
|
作者
Sarkar, Sayantan [1 ]
Osorio Leyton, Javier M. [1 ]
Noa-Yarasca, Efrain [1 ]
Adhikari, Kabindra [2 ]
Hajda, Chad B. [2 ]
Smith, Douglas R. [2 ]
机构
[1] Texas A&M AgriLife Blackland Res & Extens Ctr, Temple, TX 76502 USA
[2] United States Dept Agr, Agr Res Serv, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
关键词
corn; maize; yield prediction; machine learning; vegetation indices; ensemble methods; LEAF PIGMENT CONTENT; VEGETATION INDEX; SPECTRAL REFLECTANCE; CHLOROPHYLL CONTENT; AREA INDEX; WHEAT; CANOPY; GRAIN; WATER; TOPOGRAPHY;
D O I
10.3390/s25020543
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Efficient and reliable corn (Zea mays L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers. Therefore, the objective of our study was to determine the best combination of vegetation indices and abiotic factors for predicting corn yield in a rain-fed, production-scale area, identify the most suitable corn growth stage for yield estimation using machine learning, and identify the most effective machine learning model for corn yield estimation. Our study used high-resolution (6 cm) aerial multispectral imagery. Sixty-two different predictors, including soil properties (sand, silt, and clay percentages), slope, spectral bands (red, green, blue, red-edge, NIR), vegetation indices (GNDRE, NDRE, TGI), color-space indices, and wavelengths were derived from the multispectral data collected at the seven (V4, V5, V6, V7, V9, V12, and V14/VT) growth stages of corn. Four regression and machine learning algorithms were evaluated for yield prediction: linear regression, random forest, extreme gradient boosting, and gradient boosting regressor. A total of 6865 yield values were used for model training and 1716 for validation. Results show that, using random forest method, the V14/VT stage had the best yield predictions (RMSE of 0.52 Mg/ha for a mean yield of 10.19 Mg/ha), and yield estimation at V6 stage was still feasible. We concluded that integrating abiotic factors, such as slope and soil properties, significantly improved model accuracy. Among vegetation indices, TGI, HUE, and GNDRE performed better. Results from this study can help farmers or crop consultants plan ahead for future logistics through enhanced early-season yield predictions and support farm profitability and sustainability.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Remote sensing and machine learning algorithms to predict soil salinity in southern Kazakhstan
    Amirgaliyev, Yedilkhan
    Mukhamediev, Ravil
    Merembayev, Timur
    Kuchin, Yan
    Ataniyazova, Aisulyu
    Omarova, Perizat
    DISCOVER SUSTAINABILITY, 2024, 5 (01):
  • [22] Corn Biomass Estimation by Integrating Remote Sensing and Long-Term Observation Data Based on Machine Learning Techniques
    Geng, Liying
    Che, Tao
    Ma, Mingguo
    Tan, Junlei
    Wang, Haibo
    REMOTE SENSING, 2021, 13 (12)
  • [23] Improving wheat yield prediction integrating proximal sensing and weather data with machine learning
    Ruan, Guojie
    Li, Xinyu
    Yuan, Fei
    Cammarano, Davide
    Ata-UI-Karim, Syed Tahir
    Liu, Xiaojun
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Cao, Qiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [24] A Multiple Instance Dictionary Learning Approach for Corn Yield Prediction From Remote Sensing Data
    Huang, Risheng
    Chen, Shuhan
    Li, Xiaorun
    Cao, Zeyu
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 41702 - 41716
  • [25] Crop type classification in Southern Brazil: Integrating remote sensing, crop modeling and machine learning
    Pott, Luan Pierre
    Amado, Telmo Jorge Carneiro
    Schwalbert, Rai Augusto
    Corassa, Geomar Mateus
    Ciampitti, Ignacio Antonio
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 201
  • [26] Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
    Shahhosseini, Mohsen
    Hu, Guiping
    Huber, Isaiah
    Archontoulis, Sotirios V.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Grain Crop Yield Prediction Using Machine Learning Based on UAV Remote Sensing: A Systematic Literature Review
    Yuan, Jianghao
    Zhang, Yangliang
    Zheng, Zuojun
    Yao, Wei
    Wang, Wensheng
    Guo, Leifeng
    DRONES, 2024, 8 (10)
  • [28] Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
    Mohsen Shahhosseini
    Guiping Hu
    Isaiah Huber
    Sotirios V. Archontoulis
    Scientific Reports, 11
  • [29] Ensemble of Machine Learning Algorithms for Rice Grain Yield Prediction Using UAV-Based Remote Sensing
    Sarkar, Tapash Kumar
    Roy, Dilip Kumar
    Kang, Ye Seong
    Jun, Sae Rom
    Park, Jun Woo
    Ryu, Chan Seok
    JOURNAL OF BIOSYSTEMS ENGINEERING, 2024, 49 (01) : 1 - 19
  • [30] Machine learning-based crop recognition from aerial remote sensing imagery
    Yanqin Tian
    Chenghai Yang
    Wenjiang Huang
    Jia Tang
    Xingrong Li
    Qing Zhang
    Frontiers of Earth Science, 2021, 15 : 54 - 69