Persistence of hyperbolic-type degenerate invariant tori with prescribed frequencies in reversible systems

被引:0
作者
Qu, Ru [1 ]
Xu, Junxiang [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
关键词
reversible systems; KAM iteration; degenerate lower-dimensional tori; degenerate equilibrium points; STABILITY;
D O I
10.1088/1361-6544/ad9b1c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the persistence of hyperbolic-type degenerate lower-dimensional invariant tori with prescribed frequencies in reversible systems. The proof is based on the stability analysis of minimal points of real analytic functions and the non-degeneracy brought by higher-order terms.
引用
收藏
页数:26
相关论文
共 15 条
[1]   Normal linear stability of quasi-periodic tori [J].
Broer, H. W. ;
Hoo, J. ;
Naudot, V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :355-418
[2]   Quasi-periodic stability of normally resonant tori [J].
Broer, Henk W. ;
Ciocci, M. Cristina ;
Hanssmann, Heinz ;
Vanderbauwhede, Andre .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :309-318
[3]  
Eliasson L., 1988, Annali della Scuola Normale Superiore di Pisa, V15, P115
[4]   DEGENERATE LOWER DIMENSIONAL INVARIANT TORT IN REVERSIBLE SYSTEM [J].
Hu, Shengqing ;
Liu, Bin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) :3735-3763
[5]   COMPLETELY DEGENERATE LOWER-DIMENSIONAL INVARIANT TORI IN REVERSIBLE SYSTEMS [J].
Jing, Tianqi ;
Si, Wen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) :4247-4260
[6]   On lower dimensional invariant tori in reversible systems [J].
Liu, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :158-194
[7]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[8]  
Sevryuk M B., 1986, Reversible Systems (Lecture Notes in Mathematics), DOI [10.1007/bfb0075877, DOI 10.1007/BFB0075877]
[9]   Partial preservation of frequencies in KAM theory [J].
Sevryuk, MB .
NONLINEARITY, 2006, 19 (05) :1099-1140
[10]   THE ITERATION-APPROXIMATION DECOUPLING IN THE REVERSIBLE KAM THEORY [J].
SEVRYUK, MB .
CHAOS, 1995, 5 (03) :552-565