Exactly Solvable Mobility Edges for Phonons in One-Dimensional Quasiperiodic Chains

被引:0
|
作者
Hu, Yizhi [1 ,2 ]
Xu, Yong [3 ,4 ,5 ,6 ]
Yan, Kun [1 ,2 ]
Xiao, Wei-Hua [1 ,2 ]
Chen, Xiaobin [1 ,2 ,7 ]
机构
[1] Harbin Inst Technol, Sch Sci, State Key Lab Tunable Laser Technol, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Tencent, Shenzhen 518057, Guangdong, Peoples R China
[5] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[6] RIKEN, Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[7] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Anderson localization; mobility edges; phononicsystem; spring-mass model; mass modulation; ELECTRONS; TRANSPORT;
D O I
10.1021/acs.nanolett.4c05346
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mobility edges, which demarcate the boundary between extended and localized states, are fundamental to understanding the physics of localization in condensed matter systems. Systems exhibiting exact mobility edges are rare, and the localization properties of phonons have received limited prior investigation. In this work, we reveal analytical mobility edges in one-dimensional quasiperiodic-modulated spring-mass chains. The mobility edges are exactly solved and numerically validated through the eigenfrequency spectra, inverse/normalized participation ratios, and lattice wave dynamics. Our research demonstrates the Anderson localization transition in phonon systems, paving the way for experimental observations of phonon localization.
引用
收藏
页码:2219 / 2225
页数:7
相关论文
共 50 条
  • [1] Emergent mobility edges and intermediate phases in one-dimensional quasiperiodic plasmonic chains
    Hu, Yizhi
    Yan, Kun
    Chen, Xiaobin
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [2] Anomalous mobility edges in one-dimensional quasiperiodic models
    Liu, Tong
    Xia, Xu
    Longhi, Stefano
    Sanchez-Palencia, Laurent
    SCIPOST PHYSICS, 2022, 12 (01):
  • [3] One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges
    Wang, Yucheng
    Xia, Xu
    Zhang, Long
    Yao, Hepeng
    Chen, Shu
    You, Jiangong
    Zhou, Qi
    Liu, Xiong-Jun
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)
  • [4] Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization
    Biddle, J.
    Das Sarma, S.
    PHYSICAL REVIEW LETTERS, 2010, 104 (07)
  • [5] Mobility edges and localization characteristics in one-dimensional quasiperiodic quantum walk
    崔鑫辉
    王慧敏
    李志坚
    Chinese Physics B, 2024, 33 (06) : 167 - 171
  • [6] Mobility edges and localization characteristics in one-dimensional quasiperiodic quantum walk
    Cui, Xin-Hui
    Wang, Hui-Min
    Li, Zhi-Jian
    CHINESE PHYSICS B, 2024, 33 (06)
  • [7] Almost mobility edges and the existence of critical regions in one-dimensional quasiperiodic lattices
    Yucheng Wang
    Gao Xianlong
    Shu Chen
    The European Physical Journal B, 2017, 90
  • [8] Almost mobility edges and the existence of critical regions in one-dimensional quasiperiodic lattices
    Wang, Yucheng
    Gao Xianlong
    Chen, Shu
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (11):
  • [9] EXACTLY SOLVABLE ONE-DIMENSIONAL INHOMOGENEOUS MODELS
    DERRIDA, B
    FRANCE, MM
    PEYRIERE, J
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (3-4) : 439 - 449
  • [10] Electrons and structure of quasiperiodic one-dimensional chains
    Schmidt, Karla
    Springborg, Michael
    Synthetic Metals, 1993, 57 (2 -3 pt 6) : 4473 - 4478