Fundamental solution to the heat equation in a half-space with a dynamical boundary condition

被引:0
|
作者
Ishige, Kazuhiro [1 ]
Katayama, Sho [1 ]
Kawakami, Tatsuki [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
[2] Ryukoku Univ, Fac Adv Sci & Technol, Appl Math & Informat Course, 1-5 Yokotani,Seta Oe Cho, Otsu, Shiga 5202194, Japan
基金
日本学术振兴会;
关键词
SEMILINEAR ELLIPTIC EQUATION; REACTION-DIFFUSION EQUATIONS; LARGE-TIME BEHAVIOR; BLOW-UP; PARABOLIC PROBLEMS; CRITICAL EXPONENTS; GLOBAL-SOLUTIONS; EXISTENCE; NONEXISTENCE; EXTERIOR;
D O I
10.1007/s41808-025-00317-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit representation of the fundamental solution to the heat equation in a half-space of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}<^>N$$\end{document} with the homogeneous dynamical boundary condition, and obtain upper and lower estimates of the fundamental solution. These enable us to obtain sharp decay estimates of solutions to the heat equation with the homogeneous dynamical boundary condition. Furthermore, as an application of our decay estimates, we identify the so-called Fujita exponent for a semilinear heat equation in the half-space of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}<^>N$$\end{document} with the homogeneous dynamical boundary condition.
引用
收藏
页数:29
相关论文
共 50 条