High-resolution, precision mapping of seagrass blue carbon habitat using multi-spectral imaging and aerial LiDAR

被引:0
作者
Ekelund, Anders [1 ]
Waddington, Andy [1 ]
Harris, S. David [2 ]
Howe, Wells [2 ]
Dersell, Carl [1 ]
Josefsson, Erik [1 ]
Olszewski, Julian [1 ]
Tingaker, Torbjorn [1 ]
Yang, Eric [1 ]
Duarte, Carlos M. [2 ,3 ]
Gallagher, Austin J. [2 ]
机构
[1] Hexagon Geosyst, Lilla Bantorget 15, Stockholm, Sweden
[2] Beneath Waves, POB 290036, Boston, MA 02129 USA
[3] King Abdullah Univ Sci & Technol KAUST, Red Sea Res Ctr RSRC, Thuwal 239556900, Saudi Arabia
关键词
Blue carbon; Caribbean; LiDAR; Mapping; Multi-spectral; Seagrass; BATHYMETRIC LIDAR; SHALLOW WATERS; COASTAL; IMAGERY; HEIGHT; DEPTH;
D O I
10.1016/j.ecss.2024.108832
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Blue carbon ecosystems, particularly seagrass meadows, provide a myriad of critical ecosystem services through their role in supporting biodiversity, protecting shorelines, and sequestering and storing carbon. Despite their increased recognition for advancing global marine conservation efforts, our knowledge of the location and spatial extent of seagrass ecosystems globally remains relatively poor, due to the logistical and operational challenges of accurately mapping seafloor habitat using remote sensing techniques. Here we develop and validate an aerial LiDAR approach for mapping tropical seagrass blue carbon habitat in The Bahamas, by integrating full waveform bathymetric LiDAR with multi-spectral imaging. The results demonstrate accuracies between 92 and 98% for predicting seagrass types, over an extensive (e.g., >1000 km(2)) study area whilst utilizing robust ground-truthing techniques. These findings demonstrate the value of the aerial LiDAR approach used here for ongoing bathymetric surveys of seagrass habitat in The Bahamas and throughout similar ecosystems in the wider Caribbean, which should provide key insights for coastal management and conservation efforts.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Mapping Tree Species Using CNN from Bi-Seasonal High-Resolution Drone Optic and LiDAR Data [J].
Lee, Eu-Ru ;
Baek, Won-Kyung ;
Jung, Hyung-Sup .
REMOTE SENSING, 2023, 15 (08)
[42]   Exploratory Mapping of Blue Ice Regions in Antarctica Using Very High-Resolution Satellite Remote Sensing Data [J].
Jawak, Shridhar D. ;
Luis, Alvarinho J. ;
Pandit, Prashant H. ;
Wankhede, Sagar F. ;
Convey, Peter ;
Fretwell, Peter T. .
REMOTE SENSING, 2023, 15 (05)
[43]   Eelgrass (Zostera marina) and benthic habitat mapping in Atlantic Canada using high-resolution SPOT 6/7 satellite imagery [J].
Wilson, Kristen L. ;
Skinner, Marc A. ;
Lotze, Heike K. .
ESTUARINE COASTAL AND SHELF SCIENCE, 2019, 226
[44]   Detecting Long-Term Urban Forest Cover Change and Impacts of Natural Disasters Using High-Resolution Aerial Images and LiDAR Data [J].
Blackman, Raoul ;
Yuan, Fei .
REMOTE SENSING, 2020, 12 (11)
[45]   High-Resolution Mapping of Forest Carbon Stock Using Object-Based Image Analysis (OBIA) Technique [J].
Pandey, Sanjay Kumar ;
Chand, Narendra ;
Nandy, Subrata ;
Muminov, Abulqosim ;
Sharma, Anchit ;
Ghosh, Surajit ;
Srinet, Ritika .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2020, 48 (06) :865-875
[46]   Estimation of the leaf area density distribution of individual trees using high-resolution and multi-return airborne LiDAR data [J].
Oshio, Haruki ;
Asawa, Takashi ;
Hoyano, Akira ;
Miyasaka, Satoshi .
REMOTE SENSING OF ENVIRONMENT, 2015, 166 :116-125
[47]   High Resolution Mapping of Submerged Sediment Size and Suitable Salmon Spawning Habitat Using Topo-Bathymetric Lidar in the Santiam River Basin, Oregon [J].
White, James S. ;
Bartelt, Karen ;
Overstreet, Brandon T. ;
Kelley, Jake R. .
WATER RESOURCES RESEARCH, 2025, 61 (08)
[48]   Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping [J].
Mitchell, Matthew G. E. ;
Johansen, Kasper ;
Maron, Martine ;
McAlpine, Clive A. ;
Wu, Dan ;
Rhodes, Jonathan R. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 622 :57-70
[49]   High-resolution mapping of GDP using multi-scale feature fusion by integrating remote sensing and POI data [J].
Wu, Nan ;
Yan, Jining ;
Liang, Dong ;
Sun, Zhongchang ;
Ranjan, Rajiv ;
Li, Jun .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 129
[50]   Deep neural network for complex open-water wetland mapping using high-resolution WorldView-3 and airborne LiDAR data [J].
Martins, Vitor S. ;
Kaleita, Amy L. ;
Gelder, Brian K. ;
Nagel, Gustavo W. ;
Maciel, Daniel A. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 93