Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping

被引:0
|
作者
Liu, Ruijuan [1 ]
Zhang, Qiong [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2025年 / 105卷 / 03期
基金
中国国家自然科学基金;
关键词
ELASTIC-SYSTEMS; DECAY-RATE; SHEAR;
D O I
10.1002/zamm.202300262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Timoshenko beam equation with locally distributed Kelvin-Voigt damping, which affects either the shear stress or the bending moment. The damping coefficient exhibits a singularity, causing its derivative to be discontinuous. By using the frequency domain method and multiplier technique, we prove that the associated semigroup is polynomial stability. Specifically, regardless of whether the local Kelvin-Voigt damping acts on the shear stress or the bending moment, the system decays polynomially with rate t-(1)/(2).
引用
收藏
页数:14
相关论文
共 25 条