Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco

被引:0
|
作者
Boukhris, Abdelouafi [1 ]
Jilali, Antari [1 ]
Sadiq, Abderrahmane [1 ]
机构
[1] Ibnou Zohr Univ, Polydisciplinary Fac Taroudant, Lab Comp Syst Engn Math & Applicat ISIMA, BP 8106, Agadir, Morocco
来源
关键词
Satellite imagery; Iot; Arcgis; Deep learning; RMSE; NoSQL Database;
D O I
10.1016/j.rico.2024.100489
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the domain of efficient management of resources and ensuring nutritional consistency, accuracy in predicting crop yields becomes crucial. The advancement of artificial intelligence techniques, synchronized with satellite imagery, has emerged as a potent approach for forecasting crop yields in modern times. We used two types of data: spatial data and temporal data. Spatial data are gathered from satellite imagery and processed using ArcGIS to extract data about crops based on several indices like NDVI and NWDI. Temporal data are gathered from agricultural sensors such as temperature sensors, rainfall sensor, precipitation sensor and soil moisture sensor. In our case we used Sentinel 2 satellite to extract vegetation indices. We have used IoT systems, especially Raspberry Pi B+ to collect and process data coming from sensors. All data collected are then stored into a NoSQL server to be analysed and processed. Several machine learning and deep learning algorithms have been used for the processing of crop recommendation system, such as logistic regression, KNN, decision tree, support vector machine, LSTM, and Bi-LSTM through the collected dataset. We used GRU deep learning model for the best performance, the RMSE and R2 for this model was 0.00036 and 0.99 respectively. The main contribution of our paper is the development of a new system that can predict several crop yields, such as wheat, maize, etc., using IoT, satellite imagery for spatial data and the use of sensors for temporal data. We are the first paper that has combined spatial data and temporal data to predict crop yield based on deep learning algorithms, unlike other works that uses only remote sensing data or temporal data. We created an E-monitoring crop yield prediction system that helps farmers track all information about crops and show the result of prediction in a mobile application. This system helps farmers with more efficient decision making to enhance crop production. The main production regions of wheat in Morocco are in the rainfed areas of the plains and plateaus of Chaouia, Abda, Haouz, Tadla, Gharb and Sa & iuml;s. We studied three main regions well known for wheat production which are Rabat-Sale<acute accent>, Fez-Meknes, Casablanca-Settat.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Prediction for Big Data and IoT in 2017
    Chhabra, Anmol Singh
    Choudhury, Tanupriya
    Srivastava, Arjun Vaibhav
    Aggarwal, Archit
    2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS), 2017, : 181 - 187
  • [22] Wheat yield prediction using machine learning and advanced sensing techniques
    Pantazi, X. E.
    Moshou, D.
    Alexandridis, T.
    Whetton, R. L.
    Mouazen, A. M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 121 : 57 - 65
  • [23] Intrusion Detection Using Big Data and Deep Learning Techniques
    Faker, Osama
    Dogdu, Erdogan
    PROCEEDINGS OF THE 2019 ANNUAL ACM SOUTHEAST CONFERENCE (ACMSE 2019), 2019, : 86 - 93
  • [24] Big data analytics deep learning techniques and applications: A survey
    Selmy, Hend A.
    Mohamed, Hoda K.
    Medhat, Walaa
    INFORMATION SYSTEMS, 2024, 120
  • [25] High performance deep learning techniques for big data analytics
    Li, Maozhen
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (23):
  • [26] A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data
    Al-amri, Redhwan
    Murugesan, Raja Kumar
    Man, Mustafa
    Abdulateef, Alaa Fareed
    Al-Sharafi, Mohammed A.
    Alkahtani, Ammar Ahmed
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [27] A Deep-Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data
    Peng, Dailiang
    Cheng, Enhui
    Feng, Xuxiang
    Hu, Jinkang
    Lou, Zihang
    Zhang, Hongchi
    Zhao, Bin
    Lv, Yulong
    Peng, Hao
    Zhang, Bing
    REMOTE SENSING, 2024, 16 (19)
  • [28] Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data
    Mia, Md. Suruj
    Tanabe, Ryoya
    Habibi, Luthfan Nur
    Hashimoto, Naoyuki
    Homma, Koki
    Maki, Masayasu
    Matsui, Tsutomu
    Tanaka, Takashi S. T.
    REMOTE SENSING, 2023, 15 (10)
  • [29] Data Mining Techniques for IoT and Big Data -A Survey
    Shobanadevi, A.
    Maragatham, G.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 66 - 78
  • [30] Traffic Flow Prediction With Big Data: A Deep Learning Approach
    Lv, Yisheng
    Duan, Yanjie
    Kang, Wenwen
    Li, Zhengxi
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (02) : 865 - 873