SeBot: Structural Entropy Guided Multi-View Contrastive Learning for Social Bot Detection

被引:2
|
作者
Yang, Yingguang [1 ]
Wu, Qi [1 ]
He, Buyun [1 ]
Peng, Hao [2 ]
Yang, Renyu [2 ]
Hao, Zhifeng [3 ]
Liao, Yong [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Beihang Univ, Beijing, Peoples R China
[3] Shantou Univ, Shantou, Peoples R China
来源
PROCEEDINGS OF THE 30TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2024 | 2024年
基金
北京市自然科学基金;
关键词
social bot detection; graph neural networks; contrastive learning; structural entropy;
D O I
10.1145/3637528.3671871
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advancements in social bot detection have been driven by the adoption of Graph Neural Networks. The social graph, constructed from social network interactions, contains benign and bot accounts that influence each other. However, previous graph-based detection methods that follow the transductive message-passing paradigm may not fully utilize hidden graph information and are vulnerable to adversarial bot behavior. The indiscriminate message passing between nodes from different categories and communities results in excessively homogeneous node representations, ultimately reducing the effectiveness of social bot detectors. In this paper, we propose SeBot, a novel multi-view graph-based contrastive learning-enabled social bot detector. In particular, we use structural entropy as an uncertainty metric to optimize the entire graph's structure and subgraph-level granularity, revealing the implicitly existing hierarchical community structure. And we design an encoder to enable message passing beyond the homophily assumption, enhancing robustness to adversarial behaviors of social bots. Finally, we employ multi-view contrastive learning to maximize mutual information between different views and enhance the detection performance through multi-task learning. Experimental results demonstrate that our approach significantly improves the performance of social bot detection compared with SOTA methods.
引用
收藏
页码:3841 / 3852
页数:12
相关论文
共 50 条
  • [41] Joint contrastive triple-learning for deep multi-view clustering
    Hu, Shizhe
    Zou, Guoliang
    Zhang, Chaoyang
    Lou, Zhengzheng
    Geng, Ruilin
    Ye, Yangdong
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [42] A Multi-View Double Alignment Hashing Network with Weighted Contrastive Learning
    Zhang, Tianlong
    Xue, Zhe
    Dong, Yuchen
    Du, Junping
    Liang, Meiyu
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024, 2024,
  • [43] Strengthening incomplete multi-view clustering: An attention contrastive learning method
    Hou, Shudong
    Guo, Lanlan
    Wei, Xu
    IMAGE AND VISION COMPUTING, 2025, 157
  • [44] AdaMCL: Adaptive Fusion Multi-View Contrastive Learning for Collaborative Filtering
    Zhu, Guanghui
    Lu, Wang
    Yuan, Chunfeng
    Huang, Yihua
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1076 - 1085
  • [45] A Multi-view Molecular Pre-training with Generative Contrastive Learning
    Liu, Yunwu
    Zhang, Ruisheng
    Yuan, Yongna
    Ma, Jun
    Li, Tongfeng
    Yu, Zhixuan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (03) : 741 - 754
  • [46] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [47] Multi-View Consistency Contrastive Learning With Hard Positives for Sleep Signals
    Deng, Jiaoxue
    Lin, Youfang
    Jin, Xiyuan
    Ning, Xiaojun
    Wang, Jing
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1102 - 1106
  • [48] View-Driven Multi-View Clustering via Contrastive Double-Learning
    Liu, Shengcheng
    Zhu, Changming
    Li, Zishi
    Yang, Zhiyuan
    Gu, Wenjie
    ENTROPY, 2024, 26 (06)
  • [49] Dual-dimensional contrastive learning for incomplete multi-view clustering
    Zhu, Zhengzhong
    Pu, Chujun
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    NEUROCOMPUTING, 2025, 615
  • [50] Modeling Multi-View Interactions with Contrastive Graph Learning for Collaborative Filtering
    Cheng, Zhangtao
    Walker, Joojo
    Zhong, Ting
    Zhou, Fan
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,