Development and validation of a convolutional neural network model in the detection of Crohn's disease erosions and ulcers by pan-enteric wireless capsule endoscopy

被引:0
|
作者
Tamilarasan, Aravind Gokul [1 ,2 ]
Yang, Xianghui [2 ]
Haifer, Craig [2 ,3 ]
Section, Sudarshan Paramsothy [2 ,4 ,5 ]
Leong, Rupert [2 ,4 ,5 ]
机构
[1] Royal Prince Alfred Hosp, Sydney, NSW, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] St Vincents Hosp, Sydney, NSW, Australia
[4] Macquarie Univ Hosp, Sydney, NSW, Australia
[5] Concord Repatriat Gen Hosp, Sydney, NSW, Australia
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
201
引用
收藏
页码:195 / 196
页数:2
相关论文
共 50 条
  • [31] VALIDATION OF A BINARY CLASSIFICATION MODEL USING A DEEP CONVOLUTIONAL NEURAL NETWORK FOR WIRELESS CAPSULE ENDOSCOPY
    Kim, Sang Hoon
    Hwang, Youngbae
    Oh, Dong Jun
    Nam, Ji Hyung
    Kim, Ki Bae
    Park, Junseok
    Song, Hyun Joo
    Lim, Yun Jeong
    GASTROINTESTINAL ENDOSCOPY, 2021, 93 (06) : AB201 - AB201
  • [32] A Deep Convolutional Neural Network for Bleeding Detection in Wireless Capsule Endoscopy Images
    Jia, Xiao
    Meng, Max Q. -H.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 639 - 642
  • [33] PILLCAM™ CROHN'S CAPSULE - DEVELOPMENT AND VALIDATION OF A DEEP LEARNING ALGORITHM FOR AUTOMATIC DETECTION OF ULCERS AND EROSIONS - A MULTICENTRIC STUDY
    Afonso, Joao
    Saraiva, Miguel M.
    Ribeiro, Tiago F.
    Andrade, Patricia
    Lopes, Susana
    Saraiva, Miguel Mascarenhas
    Cardoso, Helder
    Macedo, Guilherme
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (06) : AB207 - AB207
  • [34] Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network
    Diego Marin-Santos
    Juan A. Contreras-Fernandez
    Isaac Perez-Borrero
    Hector Pallares-Manrique
    Manuel E. Gegundez-Arias
    Applied Intelligence, 2023, 53 : 12632 - 12646
  • [35] Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network
    Marin-Santos, Diego
    Contreras-Fernandez, Juan A.
    Perez-Borrero, Isaac
    Pallares-Manrique, Hector
    Gegundez-Arias, Manuel E.
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12632 - 12646
  • [36] Artificial intelligence and capsule endoscopy: automatic detection of enteric protruding lesions using a convolutional neural network
    Saraiva, Miguel Mascarenhas
    Afonso, Joao
    Ribeiro, Tiago
    Ferreira, Joao
    Cardoso, Helder
    Andrade, Patricia
    Goncalves, Raquel
    Cardoso, Pedro
    Parente, Marco
    Jorge, Renato
    Macedo, Guilherme
    REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS, 2023, 115 (02) : 75 - 79
  • [37] Deep Convolutional Neural Network-Based Automated Lesion Detection in Wireless Capsule Endoscopy
    Jeon, Yejin
    Cho, Eunbyul
    Moon, Sehwa
    Chae, Seung-Hoon
    Jo, Hae Young
    Kim, Tae Oh
    Moon, Chang Mo
    Choi, Jang-Hwan
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [38] Deep learning algorithms for automated detection of Crohn's disease ulcers by video capsule endoscopy
    Klang, Eyal
    Barash, Yiftach
    Margalit, Reuma Yehuda
    Soffer, Shelly
    Shimon, Orit
    Albshesh, Ahmad
    Ben-Horin, Shomron
    Amitai, Marianne Michal
    Eliakim, Rami
    Kopylov, Uri
    GASTROINTESTINAL ENDOSCOPY, 2020, 91 (03) : 606 - +
  • [39] Comparing diagnostic yield of a novel pan-enteric video capsule endoscope with ileocolonoscopy in patients with active Crohn's disease: a feasibility study
    Leighton, Jonathan A.
    Helper, Debra J.
    Gralnek, Ian M.
    Dotan, Iris
    Fernandez-Urien, Ignacio
    Lahat, Adi
    Malik, Pramod
    Mullin, Gerard E.
    Rosa, Bruno
    GASTROINTESTINAL ENDOSCOPY, 2017, 85 (01) : 196 - +
  • [40] Computer aided detection of Crohn's disease small bowel lesions in wireless capsule endoscopy
    de Maissin, A.
    Gomez, T.
    Le Berre, C.
    Normand, N.
    Mouchere, H.
    Trang, C.
    Bourreille, A.
    JOURNAL OF CROHNS & COLITIS, 2018, 12 : S178 - S179