Pest-YOLO: A Lightweight Pest Detection Model Based on Multi-level Feature Fusion

被引:1
作者
Zhu, Xiaoyue [1 ,2 ]
Jia, Bing [1 ,2 ]
Huang, Baoqi [1 ,2 ]
Li, Haodong [1 ,2 ]
Liu, Xiaohao [1 ,2 ]
Seah, Winston K. G. [3 ]
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Hohhot 010000, Inner Mongolia, Peoples R China
[2] Minist Educ, Engn Res Ctr Ecol Big Data, Hohhot, Peoples R China
[3] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6140, New Zealand
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024 | 2024年 / 14865卷
关键词
Pest detection; Lightweight model; Multi-level feature fusion;
D O I
10.1007/978-981-97-5591-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate identification of forest and grassland pests is crucial for ecosystem stability and biodiversity. Given the characteristics of pests in forest and grassland environments-such as a wide variety of species, color similarity to the background, small inter-class variability, and large intra-class variability-an improved lightweight target detection model, Pest-YOLO, is proposed. This model addresses the deficiencies of traditional models in terms of recognition accuracy and response speed. Firstly, an online data enhancement method is introduced, applying different image transformation strategies to enable the model to learn more feature representations. Secondly, a multi-level feature fusion method is proposed and combined with the Ghost model to maintain adaptability while compressing the network size. Additionally, the SERes detection head is proposed to improve the network's ability to detect similar targets. Experimental results show that Pest-YOLO achieves the best detection performance on the PEST27 dataset, with 14.16 M fewer parameters and a 3% improvement in the model's mAP0.5 compared to the original YOLOv8 algorithm, demonstrating its effectiveness and potential for forest and grassland pest detection tasks.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 23 条
[1]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[2]   Dynamic DETR: End-to-End Object Detection with Dynamic Attention [J].
Dai, Xiyang ;
Chen, Yinpeng ;
Yang, Jianwei ;
Zhang, Pengchuan ;
Yuan, Lu ;
Zhang, Lei .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :2968-2977
[3]  
Ge Z, 2021, Arxiv, DOI [arXiv:2107.08430, DOI 10.48550/ARXIV.2107.08430]
[4]   Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review [J].
Ghaffarian, Saman ;
Valente, Joao ;
van der Voort, Mariska ;
Tekinerdogan, Bedir .
REMOTE SENSING, 2021, 13 (15)
[5]   Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images [J].
Gong, Hang ;
Mu, Tingkui ;
Li, Qiuxia ;
Dai, Haishan ;
Li, Chunlai ;
He, Zhiping ;
Wang, Wenjing ;
Han, Feng ;
Tuniyazi, Abudusalamu ;
Li, Haoyang ;
Lang, Xuechan ;
Li, Zhiyuan ;
Wang, Bin .
REMOTE SENSING, 2022, 14 (12)
[6]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[7]  
Jiang HZ, 2017, IEEE INT CONF AUTOMA, P650, DOI [10.1109/FG.2017.82, 10.1109/MWSYM.2017.8058653]
[8]  
Jocher G., 2022, ultralytics/yolov5: v6.2-yolov5 classification models, apple m1, reproducibility, clearml and deci. ai integrations
[9]  
Kumar Avinash, 2019, 2019 International Conference on Communication and Signal Processing (ICCSP), P0185, DOI 10.1109/ICCSP.2019.8698099
[10]  
Li CY, 2022, Arxiv, DOI arXiv:2209.02976