Markov Chains in the Domain of Attraction of Brownian Motion in Cones

被引:0
|
作者
Denisov, Denis [1 ]
Zhang, Kaiyuan [1 ]
机构
[1] Univ Manchester, Dept Math, Oxford Rd, Manchester M13 9PL, England
关键词
Random walk; Markov chain; Exit time; Harmonic function; Conditioned process; POTENTIAL-THEORY; LIMIT-THEOREMS; RANDOM-WALKS; EXIT TIMES;
D O I
10.1007/s10959-024-01369-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a multidimensional Markov chain X converging to a multidimensional Brownian motion. We construct a positive harmonic function for X killed on exiting the cone. We show that its asymptotic behaviour is similar to that of the harmonic function of Brownian motion. We use the harmonic function to study the asymptotic behaviour of the tail distribution of the exit time tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} of X from a cone.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Convex Hull of Brownian Motion and Brownian Bridge
    Sebek, Stjepan
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (04) : 459 - 475
  • [32] Ungarian Markov chains
    Defant, Colin
    Li, Rupert
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [33] Segregating Markov Chains
    Timo Hirscher
    Anders Martinsson
    Journal of Theoretical Probability, 2018, 31 : 1512 - 1538
  • [34] Perturbed Markov chains
    Hunter, Jeffrey J.
    CONTRIBUTIONS TO PROBABILITY AND STATISTICS: APPLICATIONS AND CHALLENGES, 2006, : 99 - 112
  • [35] Segregating Markov Chains
    Hirscher, Timo
    Martinsson, Anders
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (03) : 1512 - 1538
  • [36] Morphological Analysis of Brownian Motion for Physical Measurements
    Puybareau, Elodie
    Talbot, Hugues
    Gaber, Noha
    Bourouina, Tarik
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING (ISMM 2017), 2017, 10225 : 486 - 497
  • [37] On Transience Conditions for Markov Chains and Random Walks
    D. E. Denisov
    S. G. Foss
    Siberian Mathematical Journal, 2003, 44 : 44 - 57
  • [38] Stopped Markov chains with stationary occupation times
    Evans, SN
    Pitman, J
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (03) : 425 - 433
  • [39] Topics in Markov chains: Mixing and escape rate
    Komjathy, Julia
    Peres, Yuval
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 303 - 330
  • [40] Distributed Averaging Via Lifted Markov Chains
    Jung, Kyomin
    Shah, Devavrat
    Shin, Jinwoo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 634 - 647