Markov Chains in the Domain of Attraction of Brownian Motion in Cones

被引:0
|
作者
Denisov, Denis [1 ]
Zhang, Kaiyuan [1 ]
机构
[1] Univ Manchester, Dept Math, Oxford Rd, Manchester M13 9PL, England
关键词
Random walk; Markov chain; Exit time; Harmonic function; Conditioned process; POTENTIAL-THEORY; LIMIT-THEOREMS; RANDOM-WALKS; EXIT TIMES;
D O I
10.1007/s10959-024-01369-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a multidimensional Markov chain X converging to a multidimensional Brownian motion. We construct a positive harmonic function for X killed on exiting the cone. We show that its asymptotic behaviour is similar to that of the harmonic function of Brownian motion. We use the harmonic function to study the asymptotic behaviour of the tail distribution of the exit time tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} of X from a cone.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] THE FIRST EXIT TIME OF FRACTIONAL BROWNIAN MOTION FROM A PARABOLIC DOMAIN
    Aurzada, F.
    Lifshits, M. A.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 64 (03) : 490 - 497
  • [22] The first exit time of fractional Brownian motion from an unbounded domain
    Zhou, Yinbing
    Lu, Dawei
    STATISTICS & PROBABILITY LETTERS, 2025, 218
  • [23] Brownian Motion
    B. V. Rao
    Resonance, 2021, 26 : 89 - 104
  • [24] Brownian Motion
    Rao, B. V.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2021, 26 (01): : 89 - 104
  • [25] Brownian Brownian Motion-I
    Chernov, Nikolai
    Dolgopyat, Dmitry
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 198 (927) : VII - +
  • [26] Representations for the decay parameter of Markov chains
    Chen, Jinwen
    Jian, Siqi
    Li, Haitao
    BERNOULLI, 2017, 23 (03) : 2058 - 2082
  • [27] Equivalences of Geometric Ergodicity of Markov Chains
    Gallegos-Herrada, Marco A.
    Ledvinka, David
    Rosenthal, Jeffrey S.
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1230 - 1256
  • [28] Brownian motion in a quasi-cone
    DeBlassie, Dante
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (1-2) : 127 - 148
  • [29] The First Exit Time of Fractional Brownian Motion with a Drift from a Parabolic Domain
    Zhou, Yinbing
    Lu, Dawei
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2024, 26 (01)
  • [30] The First Exit Time of Fractional Brownian Motion with a Drift from a Parabolic Domain
    Yinbing Zhou
    Dawei Lu
    Methodology and Computing in Applied Probability, 2024, 26