Bifunctional Strontium-Iron Doped Neodymium Cobaltite: A Promising Electrocatalyst for Intermediate Temperature Solid Oxide Fuel Cells and CO2 Electrolyzer

被引:0
作者
Ghosh, Subhrajyoti [1 ]
Kakati, Biraj Kumar [2 ]
Jhaa, Gaurav [3 ]
Dabodiya, Tulsi Satyavir [1 ]
Basu, Suddhasatwa [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India
[2] Tezpur Univ, Dept Energy, Tezpur 784028, Assam, India
[3] Indian Inst Sci Educ & Res Mohali, Dept Chem Sci, Mohali 140306, Punjab, India
关键词
CO2; reduction; cobaltite's; oxygen reduction reactions; reverse water gas shift reactions; SOEC; SOFC; SM0.5SR0.5COO3; CATHODES; CRYSTAL-STRUCTURE; ION-TRANSPORT; REDUCTION; PERFORMANCE; STABILITY; PEROVSKITES; MECHANISM; SPECTRA; CATIONS;
D O I
10.1002/smll.202408963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel intermediate temperature solid oxide fuel cell cathode, Nd-0.Sr-67(0).Co-33(0).Fe-8(0).O-2(3-delta) (NSCF), synthesized via auto-combustion, exhibits exceptional mixed ionic-electronic conducting properties with a cubic perovskite structure. At 800 degrees C, NSCF demonstrates high electrical (1003 S cm(-1)) and ionic (1.676 x 10(-2) S cm(-1)) conductivities, with activation energies of 0.0335 and 0.481 eV, respectively. Electronic analysis confirms its metallic nature, while the calculated oxygen migration energy (0.455 eV) correlates with experimental ionic conduction activation energy. The negative bulk oxygen vacancy formation energy (-38.70 kcal mol(-1)) indicates efficient oxygen reduction reaction and CO2 electrolysis kinetics. Electrical conductivity relaxation shows non-debye behavior, with D-chem of 5 x 10(-4) cm(2) s(-1) and K-ex of 6.450 x 10(-4) cm (-1)s at 800 degrees C. NSCF exhibits low interfacial polarization resistance (0.05 Omega cm(2)) and area-specific resistance (0.025 Omega cm(2)), further reducing to 0.014 Omega cm(2) with an NSCF-GDC Gadolinium doped ceria interlayer. An anode-supported cell achieves peak power densities of 2.27, 1.52, and 0.86 W cm(-2) at 800, 750, and 700 degrees C, respectively. In SOEC mode, NSCF demonstrates excellent CO2 reduction capability of constant current density of -1.1 A cm(-2) with stable 55-h performance, which establishes its potential both as IT-SOFC cathode and CO2 electrolysis catalysts.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells
    Sarat, S.
    Sammes, N.
    Smirnova, A.
    JOURNAL OF POWER SOURCES, 2006, 160 (02) : 892 - 896
  • [42] A niobium and tungsten co-doped SrFeO3-δ perovskite as cathode for intermediate temperature solid oxide fuel cells
    Yao, Chuangang
    Zhang, Haixia
    Liu, Xiaojuan
    Meng, Junling
    Meng, Jian
    Meng, Fanzhi
    CERAMICS INTERNATIONAL, 2019, 45 (06) : 7351 - 7358
  • [43] Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells with stabilized zirconia electrolytes
    He, Beibei
    Zhao, Ling
    Song, Shuxiang
    Jiang, Zhiyi
    Xia, Changrong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5589 - 5594
  • [44] Impregnated LaCo0.3Fe0.67Pd0.03O3-δ as a promising electrocatalyst for "symmetrical" intermediate-temperature solid oxide fuel cells
    Shen, Jian
    Chen, Yubo
    Yang, Guangming
    Zhou, Wei
    Tade, Moses O.
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2016, 306 : 92 - 99
  • [45] A novel Nb and Cu co-doped SrCoO3-δ cathode for intermediate temperature solid oxide fuel cells
    Le, Shiru
    Li, Chunfeng
    Song, Xueqin
    Zhang, Yanxiang
    Feng, Yujie
    Mao, Yachun
    Zhu, Xiaodong
    Zhang, Naiqing
    Yuan, Zaifang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (18) : 10862 - 10870
  • [46] Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells
    Lyskov, N. V.
    Kolchina, L. M.
    Galin, M. Z.
    Mazo, G. N.
    SOLID STATE IONICS, 2018, 319 : 156 - 161
  • [47] Sr-doped Sm2CuO4 cathode for intermediate temperature solid oxide fuel cells
    Chaudhari, V. N.
    Khandale, A. P.
    Bhoga, S. S.
    SOLID STATE IONICS, 2014, 268 : 140 - 149
  • [48] LaCoO3-δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ: A promising cathode material with remarkable performance and CO2 resistance for intermediate temperature solid oxide fuel cells
    Qiu, Peng
    Wang, Ao
    Zheng, Haoyu
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Li, Jian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) : 20696 - 20703
  • [49] Development of Intermediate-Temperature Solid Oxide Fuel Cells Using Doped Lanthanum Gallate Electrolyte
    Eto, Hiroyuki
    Akbay, Taner
    Akikusa, Jun
    Uozumi, Gakuji
    Chitose, Norihisa
    Inagaki, Toru
    Ishihara, Tatsumi
    ASIAN CERAMIC SCIENCE FOR ELECTRONICS III AND ELECTROCERAMICS IN JAPAN XII, 2010, 421-422 : 340 - +
  • [50] Preparation and properties of LSB-doped GDC electrolytes for intermediate temperature solid oxide fuel cells
    Liu, Jian
    Tu, Taiping
    Peng, Kaiping
    IONICS, 2018, 24 (11) : 3543 - 3554