Direct Synthesis of Topology-Controlled BODIPY and CO2-Based Zirconium Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction

被引:0
|
作者
Song, Bo [1 ]
Song, Wentao [1 ]
Liang, Yuhang [2 ,3 ]
Liu, Yong [4 ]
Li, Bowen [1 ]
Li, He [1 ]
Zhang, Liang [5 ]
Ma, Yanhang [2 ,3 ]
Ye, Ruquan [4 ]
Tang, Ben Zhong [5 ,6 ]
Zhao, Dan [1 ]
Zhou, Yi [2 ,3 ]
Liu, Bin [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[2] ShanghaiTech Univ, Shanghai Key Lab High Resolut Electron Microscopy, Shanghai 201210, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] City Univ Hong Kong, Dept Chem, State Key Lab Marine Pollut, Hong Kong, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[6] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen Inst Aggregate Sci & Technol, Shenzhen 518172, Guangdong, Peoples R China
基金
新加坡国家研究基金会;
关键词
CO2-based metal-organic frameworks; BODIPY; topology-control; high-resolution and scanning transmission electron microscopy; photocatalytic CO2 reduction; CONVERSION; POLYOXOMETALATE; PHOTOREDUCTION; MOFS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO2 as a feedstock. By controlling synthetic conditions, we successfully obtained two distinct Zr-MOFs. The first, CO2-Zr-6-DEPB, exhibits a face-centered cubic (fcu) topology based on a Zr-6(mu(3)-O)(4)(mu(3)-OH)(4) node, while the second, CO2-Zr-12-DEPB, features a hexagonal closed packed (hcp) topology, structured around a Zr-12(mu(3)-O)(8)(mu(3)-OH)(8)(mu(2)-OH)(6) node. Both MOFs demonstrated excellent crystallinity, as verified through powder X-ray diffraction and high-resolution transmission electron microscopy analyses. These MOF catalysts displayed suitable photocatalytic redox potentials for the reduction of CO2 to CO using H2O as the electron donor in the absence of co-catalyst or toxic sacrificial reagent. Under light irradiation, CO2-Zr-12-DEPB and CO2-Zr-6-DEPB offered high CO yields of 16.72 and 13.91 mu mol g(-1)h(-1), respectively, with nearly 100% selectivity. CO2 uptake and photoelectrochemical experiments revealed key insights into the mechanisms driving the different catalytic activities of the two MOFs. These BODIPY and CO2-based, light-responsive Zr-MOFs represent a promising platform for the development of efficient photocatalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis strategies of metal-organic frameworks for CO2 2 capture
    Sun, Meng
    Wang, Xiaokang
    Gao, Fei
    Xu, Mingming
    Fan, Weidong
    Xu, Ben
    Sun, Daofeng
    MICROSTRUCTURES, 2023, 3 (04):
  • [32] Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction
    Wu, Li-Yuan
    Mu, Yan-Fei
    Guo, Xiao-Xuan
    Zhang, Wen
    Zhang, Zhi-Ming
    Zhang, Min
    Lu, Tong-Bu
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (28) : 9491 - 9495
  • [33] Metal-organic frameworks for CO2 photoreduction
    Zhang, Lei
    Zhang, Junqing
    FRONTIERS IN ENERGY, 2019, 13 (02) : 221 - 250
  • [34] Metal-organic frameworks for CO2 photoreduction
    Lei Zhang
    Junqing Zhang
    Frontiers in Energy, 2019, 13 : 221 - 250
  • [35] CO2 Adsorption in Metal-organic Frameworks
    Kim, Jun
    Kim, Hee-Young
    Ahn, Wha-Seung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (02): : 171 - 180
  • [36] Ultrasmall Copper Nanoclusters in Zirconium Metal-Organic Frameworks for the Photoreduction of CO2
    Dai, Shan
    Kajiwara, Takashi
    Ikeda, Miyuki
    Romero-Muniz, Ignacio
    Patriarche, Gilles
    Platero-Prats, Ana E.
    Vimont, Alexandre
    Daturi, Marco
    Tissot, Antoine
    Xu, Qiang
    Serre, Christian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (43)
  • [37] Molecular Design of Zirconium Tetrazolate Metal-Organic Frameworks for CO2 Capture
    Zhang, Kang
    Qao, Zhiwei
    Jiang, Jianwen
    CRYSTAL GROWTH & DESIGN, 2017, 17 (02) : 543 - 549
  • [38] Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis
    Jeong, Hye-Min
    Roshan, Roshith
    Babu, Robin
    Kim, Hyeon-Jun
    Park, Dae-Won
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (02) : 438 - 444
  • [39] Conductive Polymers-Confined Metal-Organic Frameworks with Enhanced Activity for Highly Efficient Photocatalytic CO2 Reduction
    Fang, Xinzuo
    Lei, Sheng
    Feng, Zhiwei
    Ou, Junfei
    CHEMELECTROCHEM, 2023, 10 (07)
  • [40] Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis
    Hye-Min Jeong
    Roshith Roshan
    Robin Babu
    Hyeon-Jun Kim
    Dae-Won Park
    Korean Journal of Chemical Engineering, 2018, 35 : 438 - 444