Diddy: A Python']Python Toolbox for Infinite Discrete Dynamical Systems

被引:0
|
作者
Salo, Ville [1 ]
Torma, Ilkka [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku, Finland
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2023 | 2023年 / 14152卷
基金
芬兰科学院;
关键词
Discrete dynamics; Symbolic dynamics; Cellular automata; Algorithms; Software; IDENTIFYING VERTICES; CODES;
D O I
10.1007/978-3-031-42250-8_3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce Diddy, a collection of Python scripts for analyzing infinite discrete dynamical systems. The main focus is on generalized multidimensional shifts of finite type (SFTs). We show how Diddy can be used to easily define SFTs and cellular automata, and analyze their basic properties. We also showcase how to verify or rediscover some results from coding theory and cellular automata theory.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
  • [21] Update 1.1 to "pysimm: A python']python package for simulation of molecular systems'', (PII: S2352711016300395)
    Demidov, Alexander G.
    Perera, B. Lakshitha A.
    Fortunato, Michael E.
    Lin, Sibo
    Colina, Coray M.
    SOFTWAREX, 2021, 15
  • [22] Amorpheus: a Python']Python-based software for the treatment of X-ray scattering data of amorphous and liquid systems
    Boccato, S.
    Garino, Y.
    Morard, G.
    Zhao, B.
    Xu, F.
    Sanloup, C.
    King, A.
    Guignot, N.
    Clark, A.
    Garbarino, G.
    Morand, M.
    Antonangeli, D.
    HIGH PRESSURE RESEARCH, 2022, 42 (01) : 69 - 93
  • [23] MCell4 with BioNetGen: A Monte Carlo simulator of rule-based reaction-diffusion systems with Python']Python interface
    Husar, Adam
    Ordyan, Mariam
    Garcia, Guadalupe C.
    Yancey, Joel G.
    Saglam, Ali S.
    Faeder, James R.
    Bartol, Thomas M.
    Kennedy, Mary B.
    Sejnowski, Terrence J.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [24] Conductance in discrete dynamical systems
    S. Fernandes
    C. Grácio
    C. Ramos
    Nonlinear Dynamics, 2010, 61 : 435 - 442
  • [25] Numeration and discrete dynamical systems
    Berthe, V.
    COMPUTING, 2012, 94 (2-4) : 369 - 387
  • [26] Conductance in discrete dynamical systems
    Fernandes, S.
    Gracio, C.
    Ramos, C.
    NONLINEAR DYNAMICS, 2010, 61 (03) : 435 - 442
  • [27] DarSIA: An Open-Source Python Toolbox for Two-Scale Image Processing of Dynamics in Porous Media
    Jan Martin Nordbotten
    Benyamine Benali
    Jakub Wiktor Both
    Bergit Brattekås
    Erlend Storvik
    Martin A. Fernø
    Transport in Porous Media, 2024, 151 : 939 - 973
  • [28] USING THE IPYTHON']PYTHON NOTEBOOK AS THE COMPUTING PLATFORM FOR SIGNALS AND SYSTEMS COURSES
    Lovejoy, McKenna R.
    Wickert, Mark A.
    2015 IEEE SIGNAL PROCESSING AND SIGNAL PROCESSING EDUCATION WORKSHOP (SP/SPE), 2015, : 289 - 294
  • [29] MINIMAL DYNAMICAL SYSTEMS ON A DISCRETE VALUATION DOMAIN
    Chabert, Jean-Luc
    Fan, Ai-Hua
    Fares, Youssef
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (03) : 777 - 795
  • [30] Positive knots from discrete dynamical systems via symbolic dynamics
    Elrifai, EA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (09) : 1337 - 1345