Projection-based deep learning super-resolution for CBCT dose reduction

被引:0
作者
Thummerer, Adrian [1 ]
Hofmaier, Jan [1 ]
Belka, Claus [1 ,2 ,3 ]
Landry, Guillaume [1 ]
Kurz, Christopher [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, Dept Radiat Oncol, Munich, Germany
[2] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[3] Bavarian Canc Res Ctr, BZKF, Munich, Germany
关键词
Deep learning; dose reduction; CBCT;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2547
引用
收藏
页码:S3930 / S3934
页数:6
相关论文
共 3 条
[1]   Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180 [J].
Ding, George X. ;
Alaei, Parham ;
Curran, Bruce ;
Flynn, Ryan ;
Gossman, Michael ;
Mackie, T. Rock ;
Miften, Moyed ;
Morin, Richard ;
Xu, X. George ;
Zhu, Timothy C. .
MEDICAL PHYSICS, 2018, 45 (05) :E84-E99
[2]   Review of cone beam computed tomography based online adaptive radiotherapy: current trend and future direction [J].
Liu, Hefei ;
Schaal, David ;
Curry, Heather ;
Clark, Ryan ;
Magliari, Anthony ;
Kupelian, Patrick ;
Khuntia, Deepak ;
Beriwal, Sushil .
RADIATION ONCOLOGY, 2023, 18 (01)
[3]  
Wang XP, 2018, IDEAS HIST MOD CHINA, V19, P1, DOI 10.1163/9789004385580_002