Construction of MXene-MOF membranes with photocatalytic self-cleaning for enhanced oil-water emulsion separation

被引:2
|
作者
Li, Hua [1 ,3 ]
Lin, Hongjun [1 ,3 ]
Raza, Saleem [1 ,3 ]
Chen, Cheng [1 ,2 ,3 ]
Yu, Wei [1 ,3 ]
Zeng, Qianqian [1 ,3 ]
Zhao, Zhiyu [1 ,3 ]
Huang, Xuezheng [2 ]
Shen, Liguo [1 ,2 ,3 ]
机构
[1] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[2] Henan Univ Urban Construct, Henan Key Lab Water Pollut Control & Rehabil Techn, Pingdingshan 467036, Peoples R China
[3] Zhejiang Normal Univ, Key Lab Watershed Earth Surface Proc & Ecol Secur, Jinhua, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene-MOF membrane; Hydrophilicity; Photocatalytic self-cleaning; Oil/water separation;
D O I
10.1016/j.memsci.2024.123685
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The worldwide shortage of clean water is a well-recognized challenge, moreover, the water system is undergoing serious oil pollution. Due to the superior separation efficiency and cost-effectiveness, membrane separation technology has gained prominence for treating oily wastewater. Nevertheless, its wider adoption is largely hindered by the persistent issue of membrane fouling. Recently, hydrophilic modification offers a promising solution to mitigate this issue, and proven to be both simple and effective. In this study, MXene-MOF composite membranes with photocatalytic self-cleaning properties were constructed by using self-assembly techniques. The membrane flux is 2534.89 +/- 13.63 L m-2 h-1 bar-1, with separation efficiency exceeding 99.7 %. Notably, the water contact angle drops below 5 degrees within 5 s, attributed to the hydroquinone-functionalized coating on the BIC@MIL-101(Fe) surface, effectively preventing oil adhesion onto the membrane surface. The incorporation of functionalized BIC@MIL-101(Fe) nanoparticles further improves the membrane's photocatalytic self-cleaning performance, furtherly enhancing its anti-fouling capabilities. Following 10 cycles of water cleaning and photocatalytic self-cleaning experiments, high water flux and separation efficiency are maintained, with a flux recovery rate >= 90 %. The anti-fouling mechanism of the membrane is further elucidated using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The current findings highlight the considerable potential of MXene-MOF composite membranes for effectively treating oily wastewater.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A photocatalytic degradation self-cleaning composite membrane for oil-water separation inspired by light-trapping effect of moth-eye
    Li, Zhaoxin
    Yin, Liang
    Jiang, Shuyue
    Chen, Liang
    Sang, Shengtian
    Zhang, Haifeng
    JOURNAL OF MEMBRANE SCIENCE, 2023, 669
  • [32] Preparation of carbon cloth membrane with visible light induced self-cleaning performance for oil-water separation
    Song, Yuxin
    Lang, Jihui
    Guo, Jiale
    Zhang, Qi
    Han, Qiang
    Fan, Hougang
    Gao, Ming
    Wei, Maobin
    Yang, Jinghai
    Sheng, Zifeng
    SURFACE & COATINGS TECHNOLOGY, 2020, 403
  • [33] The efficient self-cleaning membrane of Mn-TiO2/carbon cloth for oil-water separation
    Yan, Yan
    Guo, Jiale
    Chen, Nuo
    Song, Yuxin
    Wu, Si
    Zhang, Qi
    Han, Qiang
    Gao, Ming
    Yang, Jinghai
    Lang, Jihui
    SURFACE & COATINGS TECHNOLOGY, 2021, 419
  • [34] Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying
    Huang, Jingda
    Wang, Siqun
    Lyu, Shaoyi
    Fu, Feng
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 122 : 438 - 447
  • [35] Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation
    Huang, Kang-Ting
    Yeh, Shiou-Bang
    Huang, Chun-Jen
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (38) : 21021 - 21029
  • [36] Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil-water separation
    Zhang, Qin
    Li, Keran
    Li, Jing
    Li, Yuanbo
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [37] A study on the performance of self-cleaning oil-water separation membrane formed by various TiO2 nanostructures
    Tan, Benny Yong Liang
    Tai, Ming Hang
    Juay, Jermyn
    Liu, Zhaoyang
    Sun, Darren
    SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 156 : 942 - 951
  • [38] Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil-water separation
    Yang, Jing
    Pu, Yi
    He, Hongwei
    Cao, Renguang
    Miao, Dagang
    Ning, Xin
    CELLULOSE, 2019, 26 (12) : 7507 - 7522
  • [39] Illuminating for purity: Photocatalytic and photothermal membranes for sustainable oil-water separation
    Zhu, Hongyuan
    Guo, Zhenyu
    Yu, Wei
    Yuan, Shasha
    Shen, Liguo
    Zhao, Die Ling
    Lin, Hongjun
    WATER RESEARCH, 2025, 272
  • [40] Superhydrophobic materials with good oil/water separation and self-cleaning property
    Wensheng Lin
    Mengting Cao
    Kehinde Olonisakin
    Ran Li
    Xinxiang Zhang
    Wenbin Yang
    Cellulose, 2021, 28 : 10425 - 10439