Deep Underwater Image Quality Assessment With Explicit Degradation Awareness Embedding

被引:0
|
作者
Jiang, Qiuping [1 ]
Gu, Yuese [1 ]
Wu, Zongwei [2 ]
Li, Chongyi [3 ]
Xiong, Huan [4 ]
Shao, Feng [1 ]
Wang, Zhihua [5 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Univ Wurzburg, Comp Vis Lab, D-97074 Wurzburg, Germany
[3] Nankai Univ, Sch Comp Sci, Tianjin 300071, Peoples R China
[4] Harbin Inst Technol, Inst Adv Study Math, Harbin 150006, Peoples R China
[5] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
关键词
Degradation; Training; Gray-scale; Image quality; Electronic mail; Distortion; Decoding; Imaging; Image color analysis; Artificial neural networks; Image quality assessment; underwater image; degradation awareness; deep learning; GRADIENT MAGNITUDE; FUSION;
D O I
10.1109/TIP.2025.3539477
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater Image Quality Assessment (UIQA) is currently an area of intensive research interest. Existing deep learning-based UIQA models always learn a deep neural network to directly map the input degraded underwater image into a final quality score via end-to-end training. However, a wide variety of image contents or distortion types may correspond to the same quality score, making it challenging to train such a deep model merely with a single subjective quality score as supervision. An intuitive idea to solve this problem is to exploit more detailed degradation-aware information as supplementary guidance to facilitate model learning. In this paper, we devise a novel deep UIQA model with Explicit Degradation Awareness embedding, i.e., EDANet. To train the EDANet, a two-stage training strategy is adopted. First, a tailored Degradation Information Discovery subnetwork (DIDNet) is pre-trained to infer a residual map between the input degraded underwater image and its pseudoreference counterpart. The inferred residual map explicitly characterizes the local degradation of the input underwater image. The intermediate feature representations on the decoder side of DIDNet are then embedded into the Degradation-guided Quality Evaluation subnetwork (DQENet), which significantly enhances the feature characterization capability with higher degradation awareness for quality prediction. The superiority of our EDANet against 18 state-of-the-art methods has been well demonstrated by extensive comparisons on two benchmark datasets. The source code of our EDANet is available at https://github.com/yia-yuese/EDANet.
引用
收藏
页码:1297 / 1310
页数:14
相关论文
共 50 条
  • [31] Image Quality Assessment Using Contrastive Learning
    Madhusudana, Pavan C.
    Birkbeck, Neil
    Wang, Yilin
    Adsumilli, Balu
    Bovik, Alan C.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4149 - 4161
  • [32] EDDMF: An Efficient Deep Discrepancy Measuring Framework for Full-Reference Light Field Image Quality Assessment
    Zhang, Zhengyu
    Tian, Shishun
    Zou, Wenbin
    Morin, Luce
    Zhang, Lu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 6426 - 6440
  • [33] Deep Learning From Noisy Image Labels With Quality Embedding
    Yao, Jiangchao
    Wang, Jiajie
    Tsang, Ivor W.
    Zhang, Ya
    Sun, Jun
    Zhang, Chengqi
    Zhang, Rui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1909 - 1922
  • [34] No-reference quality assessment of underwater image enhancement
    Yi, Xiao
    Jiang, Qiuping
    Zhou, Wei
    DISPLAYS, 2024, 81
  • [35] FDCE-Net: Underwater Image Enhancement With Embedding Frequency and Dual Color Encoder
    Cheng, Zheng
    Fan, Guodong
    Zhou, Jingchun
    Gan, Min
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1728 - 1744
  • [36] SISC: A Feature Interaction-Based Metric for Underwater Image Quality Assessment
    Chu, Xiaohui
    Hu, Runze
    Liu, Yutao
    Cao, Jingchao
    Xu, Lijun
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (02) : 637 - 648
  • [37] Generalizable No-Reference Image Quality Assessment via Deep Meta-Learning
    Zhu, Hancheng
    Li, Leida
    Wu, Jinjian
    Dong, Weisheng
    Shi, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1048 - 1060
  • [38] MaD-DLS: Mean and Deviation of Deep and Local Similarity for Image Quality Assessment
    Sim, Kyohoon
    Yang, Jiachen
    Lu, Wen
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4037 - 4048
  • [39] Blind Image Quality Assessment by Visual Neuron Matrix
    Chang, Hua-Wen
    Bi, Xiao-Dong
    Kai, Chen
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1803 - 1807
  • [40] Image quality assessment based on deep learning with FPGA implementation
    Zhu, Min-Ling
    Ge, Dong-Yuan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 83