LRSLAM: Low-Rank Representation of Signed Distance Fields in Dense Visual SLAM System

被引:0
作者
Park, Hongbeen [1 ]
Park, Minjeong [2 ]
Nam, Giljoo [3 ]
Kim, Jinkyu [1 ]
机构
[1] Korea Univ, Dept Comp Sci & Engn, Seoul, South Korea
[2] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
[3] Meta Real Labs, Pittsburgh, PA 15222 USA
来源
COMPUTER VISION - ECCV 2024, PT LXXX | 2025年 / 15138卷
关键词
Dense Visual SLAM; Low Rank Representation; Six-axis Decomposition;
D O I
10.1007/978-3-031-72989-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM's superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 32 条
  • [1] Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving
    Bresson, Guillaume
    Alsayed, Zayed
    Yu, Li
    Glaser, Sebastien
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2017, 2 (03): : 194 - 220
  • [2] ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION
    CARROLL, JD
    CHANG, JJ
    [J]. PSYCHOMETRIKA, 1970, 35 (03) : 283 - &
  • [3] Efficient Geometry-aware 3D Generative Adversarial Networks
    Chan, Eric R.
    Lin, Connor Z.
    Chan, Matthew A.
    Nagano, Koki
    Pan, Boxiao
    de Mello, Shalini
    Gallo, Orazio
    Guibas, Leonidas
    Tremblay, Jonathan
    Khamis, Sameh
    Karras, Tero
    Wetzstein, Gordon
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16102 - 16112
  • [4] TensoRF: Tensorial Radiance Fields
    Chen, Anpei
    Xu, Zexiang
    Geiger, Andreas
    Yu, Jingyi
    Su, Hao
    [J]. COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 : 333 - 350
  • [5] Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
  • [6] ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
    Dai, Angela
    Chang, Angel X.
    Savva, Manolis
    Halber, Maciej
    Funkhouser, Thomas
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2432 - 2443
  • [7] A Robot Architecture Using ContextSLAM to Find Products in Unknown Crowded Retail Environments
    Dworakowski, Daniel
    Thompson, Christopher
    Pham-Hung, Michael
    Nejat, Goldie
    [J]. ROBOTICS, 2021, 10 (04)
  • [8] Visual simultaneous localization and mapping: a survey
    Fuentes-Pacheco, Jorge
    Ruiz-Ascencio, Jose
    Manuel Rendon-Mancha, Juan
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (01) : 55 - 81
  • [9] A review of visual inertial odometry from filtering and optimisation perspectives
    Gui, Jianjun
    Gu, Dongbing
    Wang, Sen
    Hu, Huosheng
    [J]. ADVANCED ROBOTICS, 2015, 29 (20) : 1289 - 1301
  • [10] Huang GQ, 2019, IEEE INT CONF ROBOT, P9572, DOI [10.1109/ICRA.2019.8793604, 10.1109/icra.2019.8793604]