LRSLAM: Low-Rank Representation of Signed Distance Fields in Dense Visual SLAM System

被引:0
作者
Park, Hongbeen [1 ]
Park, Minjeong [2 ]
Nam, Giljoo [3 ]
Kim, Jinkyu [1 ]
机构
[1] Korea Univ, Dept Comp Sci & Engn, Seoul, South Korea
[2] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
[3] Meta Real Labs, Pittsburgh, PA 15222 USA
来源
COMPUTER VISION - ECCV 2024, PT LXXX | 2025年 / 15138卷
关键词
Dense Visual SLAM; Low Rank Representation; Six-axis Decomposition;
D O I
10.1007/978-3-031-72989-8_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM's superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 32 条
[1]   Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving [J].
Bresson, Guillaume ;
Alsayed, Zayed ;
Yu, Li ;
Glaser, Sebastien .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2017, 2 (03) :194-220
[2]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[3]   Efficient Geometry-aware 3D Generative Adversarial Networks [J].
Chan, Eric R. ;
Lin, Connor Z. ;
Chan, Matthew A. ;
Nagano, Koki ;
Pan, Boxiao ;
de Mello, Shalini ;
Gallo, Orazio ;
Guibas, Leonidas ;
Tremblay, Jonathan ;
Khamis, Sameh ;
Karras, Tero ;
Wetzstein, Gordon .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16102-16112
[4]   TensoRF: Tensorial Radiance Fields [J].
Chen, Anpei ;
Xu, Zexiang ;
Geiger, Andreas ;
Yu, Jingyi ;
Su, Hao .
COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 :333-350
[5]  
Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
[6]   ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes [J].
Dai, Angela ;
Chang, Angel X. ;
Savva, Manolis ;
Halber, Maciej ;
Funkhouser, Thomas ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2432-2443
[7]   A Robot Architecture Using ContextSLAM to Find Products in Unknown Crowded Retail Environments [J].
Dworakowski, Daniel ;
Thompson, Christopher ;
Pham-Hung, Michael ;
Nejat, Goldie .
ROBOTICS, 2021, 10 (04)
[8]   Visual simultaneous localization and mapping: a survey [J].
Fuentes-Pacheco, Jorge ;
Ruiz-Ascencio, Jose ;
Manuel Rendon-Mancha, Juan .
ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (01) :55-81
[9]   A review of visual inertial odometry from filtering and optimisation perspectives [J].
Gui, Jianjun ;
Gu, Dongbing ;
Wang, Sen ;
Hu, Huosheng .
ADVANCED ROBOTICS, 2015, 29 (20) :1289-1301
[10]  
Huang GQ, 2019, IEEE INT CONF ROBOT, P9572, DOI [10.1109/icra.2019.8793604, 10.1109/ICRA.2019.8793604]