Non-negative Constrained Penalty for High-Dimensional Correlated Data

被引:0
作者
Ming, Hao [1 ]
Chen, Yinjun [1 ]
Yang, Hu [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlated effects; Non-negative penalized estimator; Active set; Block coordinate descent algorithm; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; ADAPTIVE LASSO; ELASTIC-NET; REGRESSION; MODELS;
D O I
10.1007/s40304-024-00411-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate five estimators for high-dimensional correlated data with the non-negative constraints on the coefficients, which are nnMnet, nnSnet, nnSace, nnGsace and nnSsace estimators. Specifically, three commonly used penalties: Mnet, smooth adjustment for correlated effects (Sace), and generalized smooth adjustment for correlated effects (Gsace), under which three non-negative penalty estimators, nnMnet, nnSace and nnGsace are proposed, accordingly. Similar to the nnMnet and nnGsace estimators, we further combine the Scad penalty function with Liu estimator and Ridge estimator to propose non-negative Snet (nnSnet) and non-negative Ssace (nnSsace), respectively. For non-negative variable selection, we give two algorithms, fast active set block coordinate descent algorithm and one-step estimator with coordinate descent algorithm. Furthermore, we demonstrate the consistency of variable selection and estimation error bounds for the nnSace estimator, and the oracle non-negative biased estimator property for nnMnet, nnSnet, nnGsace and nnSsace estimators, respectively. Finally, we show the advantages of the proposed method through some simulations and apply our method on stock data.
引用
收藏
页数:20
相关论文
共 24 条
[1]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[2]   The single-cell transcriptional landscape of mammalian organogenesis [J].
Cao, Junyue ;
Spielmann, Malte ;
Qiu, Xiaojie ;
Huang, Xingfan ;
Ibrahim, Daniel M. ;
Hill, Andrew J. ;
Zhang, Fan ;
Mundlos, Stefan ;
Christiansen, Lena ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
NATURE, 2019, 566 (7745) :496-+
[3]   A FAST ACTIVE SET BLOCK COORDINATE DESCENT ALGORITHM FOR l1-REGULARIZED LEAST SQUARES [J].
De Santis, Marianna ;
Lucidi, Stefano ;
Rinaldi, Francesco .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) :781-809
[4]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[5]   THE Mnet METHOD FOR VARIABLE SELECTION [J].
Huang, Jian ;
Breheny, Patrick ;
Lee, Sangin ;
Ma, Shuangge ;
Zhang, Cun-Hui .
STATISTICA SINICA, 2016, 26 (03) :903-923
[6]  
Huang J, 2008, STAT SINICA, V18, P1603
[7]   Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models [J].
Li, Ning ;
Yang, Hu .
STATISTICAL PAPERS, 2021, 62 (02) :661-680
[8]   Nonnegative estimation and variable selection via adaptive elastic-net for high-dimensional data [J].
Li, Ning ;
Yang, Hu ;
Yang, Jing .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (12) :4263-4279
[9]   l1 regularized multiplicative iterative path algorithm for non-negative generalized linear models [J].
Mandal, B. N. ;
Ma, Jun .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 :289-299
[10]   Multiplicative updates for nonnegative quadratic programming [J].
Sha, Fei ;
Lin, Yuanqing ;
Saul, Lawrence K. ;
Lee, Daniel D. .
NEURAL COMPUTATION, 2007, 19 (08) :2004-2031