A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting

被引:0
|
作者
Pham, Thien [1 ,2 ]
Bui, Hung [1 ,2 ]
Nguyen, Mao [1 ,2 ]
Pham, Quang [1 ,2 ]
Vu, Vinh [1 ,2 ]
Le, Triet [1 ,2 ]
Quan, Tho [1 ,2 ]
机构
[1] Ho Chi Minh City Univ Technol HCMUT, Fac Comp Sci & Engn, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
关键词
data-driven methods; lithium-ion battery; state-of-health; time-series forecasting; USEFUL LIFE PREDICTION; SOH ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; MODEL; DEGRADATION; PROGNOSTICS; DIAGNOSIS;
D O I
10.1002/widm.70009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lithium-ion batteries are widely used in moving devices due to their many advantages compared to other battery types. The prevalence of Lithium-ion batteries is evident, playing its clear role in the operation of small devices as well as large systems such as electric vehicles, flying devices, mobile devices, and more. Monitoring lithium-ion battery health is crucial for assessing, minimizing degradation, preventing explosions, and enabling timely replacements. Assessing health often involves predicting state-of-health (SoH) or remaining useful life (RUL), with numerous studies dedicated to this field. Hence, many research studies have been conducted on predicting SoH, with a primary focus on data-driven methods based on machine learning, owing to the recent advancements in artificial intelligence (AI) techniques. To provide a systematic overview of the trends in this emerging problem, we present a comprehensive survey of classified SoH forecasting methods, with a primary focus on data-driven approaches. The paper also offers an in-depth focus on recent advancements in deep learning (DL) models, an area that has not been thoroughly discussed previously. Furthermore, we highlight the importance of input features and emphasize the critical role of temporal attributes incorporated into the models. The insights provided in this paper offer readers a comprehensive understanding of the field, equipping them to effectively advance related future work.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)
  • [42] State of health prediction for lithium-ion battery using a gradient boosting-based data-driven method
    Qin, Pengliang
    Zhao, Linhui
    Liu, Zhiyuan
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [43] An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
    Huang, Huanyang
    Meng, Jinhao
    Wang, Yuhong
    Cai, Lei
    Peng, Jichang
    Wu, Ji
    Xiao, Qian
    Liu, Tianqi
    Teodorescu, Remus
    AUTOMOTIVE INNOVATION, 2022, 5 (02) : 134 - 145
  • [44] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Yanshuo Liu
    Licheng Wang
    Dezhi Li
    Kai Wang
    Protection and Control of Modern Power Systems, 2023, 8
  • [45] Hybrid deep neural network with dimension attention for state-of-health estimation of Lithium-ion Batteries
    Bao, Xinyuan
    Chen, Liping
    Lopes, Antonio M.
    Li, Xin
    Xie, Siqiang
    Li, Penghua
    Chen, YangQuan
    ENERGY, 2023, 278
  • [46] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [47] Comparison of different data-driven methods for estimating the state of charge of lithium-ion batteries
    Kumar, Shivanshu
    Choudhury, Amalendu Bikash
    Bhattacharyya, Himadri Sekhar
    Chanda, Chandan Kumar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 2564 - 2583
  • [48] Lithium-Ion Battery Ageing Behavior Pattern Characterization and State-of-Health Estimation Using Data-Driven Method
    Xia, Zhiyong
    Abu Qahouq, Jaber A.
    IEEE ACCESS, 2021, 9 : 98287 - 98304
  • [49] Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use
    Yu, Jinsong
    Mo, Baohua
    Tang, Diyin
    Yang, Jie
    Wan, Jiuqing
    Liu, Jingjing
    ENERGIES, 2017, 10 (12)
  • [50] Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model
    Yao, Hang
    Jia, Xiang
    Zhao, Qian
    Cheng, Zhi-Jun
    Guo, Bo
    IEEE ACCESS, 2020, 8 : 95333 - 95344