A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting

被引:0
|
作者
Pham, Thien [1 ,2 ]
Bui, Hung [1 ,2 ]
Nguyen, Mao [1 ,2 ]
Pham, Quang [1 ,2 ]
Vu, Vinh [1 ,2 ]
Le, Triet [1 ,2 ]
Quan, Tho [1 ,2 ]
机构
[1] Ho Chi Minh City Univ Technol HCMUT, Fac Comp Sci & Engn, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Ho Chi Minh City, Vietnam
关键词
data-driven methods; lithium-ion battery; state-of-health; time-series forecasting; USEFUL LIFE PREDICTION; SOH ESTIMATION; CHARGE ESTIMATION; PARTICLE FILTER; MODEL; DEGRADATION; PROGNOSTICS; DIAGNOSIS;
D O I
10.1002/widm.70009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lithium-ion batteries are widely used in moving devices due to their many advantages compared to other battery types. The prevalence of Lithium-ion batteries is evident, playing its clear role in the operation of small devices as well as large systems such as electric vehicles, flying devices, mobile devices, and more. Monitoring lithium-ion battery health is crucial for assessing, minimizing degradation, preventing explosions, and enabling timely replacements. Assessing health often involves predicting state-of-health (SoH) or remaining useful life (RUL), with numerous studies dedicated to this field. Hence, many research studies have been conducted on predicting SoH, with a primary focus on data-driven methods based on machine learning, owing to the recent advancements in artificial intelligence (AI) techniques. To provide a systematic overview of the trends in this emerging problem, we present a comprehensive survey of classified SoH forecasting methods, with a primary focus on data-driven approaches. The paper also offers an in-depth focus on recent advancements in deep learning (DL) models, an area that has not been thoroughly discussed previously. Furthermore, we highlight the importance of input features and emphasize the critical role of temporal attributes incorporated into the models. The insights provided in this paper offer readers a comprehensive understanding of the field, equipping them to effectively advance related future work.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Liu, Yanshuo
    Wang, Licheng
    Li, Dezhi
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [22] A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries
    Luo, Kai
    Chen, Xiang
    Zheng, Huiru
    Shi, Zhicong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 159 - 173
  • [23] An Ensemble Learning-Based Data-Driven Method for Online State-of-Health Estimation of Lithium-Ion Batteries
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (02): : 422 - 436
  • [24] Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries
    Zhao, Zhibin
    Liu, Bingchen
    Wang, Fujin
    Zheng, Shiyu
    Yu, Qiuyu
    Zhai, Zhi
    Chen, Xuefeng
    JOURNAL OF ENERGY STORAGE, 2025, 105
  • [25] A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    ENERGIES, 2023, 16 (14)
  • [26] State of Health Prediction of Lithium-Ion Batteries Using Accelerated Degradation Test Data
    De Falco, Pasquale
    Di Noia, Luigi Pio
    Rizzo, Renato
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (06) : 6483 - 6493
  • [27] State-of-health estimation for lithium-ion batteries using differential thermal voltammetry and Gaussian process regression
    Wang, Ping
    Peng, Xiangyuan
    Ze, Cheng
    JOURNAL OF POWER ELECTRONICS, 2022, 22 (07) : 1165 - 1175
  • [28] Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization
    Dai, Houde
    Wang, Jiaxin
    Huang, Yiyang
    Lai, Yuan
    Zhu, Liqi
    RENEWABLE ENERGY, 2024, 222
  • [29] State of health forecasting of Lithium-ion batteries operated in a battery electric vehicle fleet
    von Buelow, Friedrich
    Wassermann, Markus
    Meisen, Tobias
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [30] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847