On nilpotent homoderivations in semi-prime rings

被引:0
|
作者
Taoufiq, Lahcen [1 ]
Belkadi, Said [1 ]
机构
[1] IBN ZOHR Univ, Math Comp Sci & Applicat Lab, ENSA, Agadir, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2025年 / 43卷
关键词
Homoderivation; nilpotent homoderivation; Leibniz formula; iterates of homoderivations; prime and semi-prime ring;
D O I
10.5269/bspm.63913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative ring and let s >= 1 be a fixed integer. An additive map h on R is called a homoderivation if h(xy) = h(x)h(y) + h(x)y + xh(y) holds for all x, y is an element of R. In [4,5,6], Chung and Luh proved several results about the nilpotency of derivations in semi-prime rings. Similarly, the main objective of this paper is to provide a complete study about the nilpotency of homoderivations with nilpotency 's' in semi-prime rings.
引用
收藏
页数:10
相关论文
共 9 条
  • [1] ON HIGHER ORDER HOMODERIVATIONS IN SEMI-PRIME RINGS
    Belkadi, Said
    Taoufiq, Lahcen
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 17 (01): : 99 - 112
  • [2] On nilpotent homoderivations in prime rings
    Belkadi, Said
    Ali, Shakir
    Taoufiq, Lahcen
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) : 4044 - 4053
  • [3] On n-Jordan homoderivations in rings
    Belkadi, Said
    Ali, Shakir
    Taoufiq, Lahcen
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 17 - 24
  • [4] N-commuting mappings on (semi)-prime rings with applications
    Ali, Shakir
    Ashraf, Mohammad
    Raza, Mohd Arif
    Khan, Abdul Nadim
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 2262 - 2270
  • [5] JORDAN DERIVATIONS ON PRIME RINGS AND THEIR APPLICATIONS IN BANACH ALGEBRAS, I
    Kim, Byung-Do
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 535 - 558
  • [6] Some differential identities on prime and semiprime rings and Banach algebras
    Raza, Mohd Arif
    Khan, Mohammad Shadab
    Ur Rehman, Nadeem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (02) : 305 - 313
  • [7] Some differential identities on prime and semiprime rings and Banach algebras
    Mohd Arif Raza
    Mohammad Shadab Khan
    Nadeem ur Rehman
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 305 - 313
  • [8] A quadratic generalized differential identity on Lie ideals of Prime Rings
    Demir, Cagri
    De Filippis, Vincenzo
    Argac, Nurcan
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (09) : 1835 - 1847
  • [9] Strong commutativity and Engel condition preserving maps in prime and semiprime rings
    De Filippis, Vincenzo
    Scudo, Giovanni
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07) : 917 - 938