Asymptotic behavior of the coupled Allen-Cahn/Cahn-Hilliard system with proliferation term

被引:0
作者
Makki, Ahmad [3 ,5 ]
Mheich, Rim [1 ,4 ]
Petcu, Madalina [1 ]
Talhouk, Raafat [2 ,4 ]
机构
[1] Univ Poitiers, Lab Math & Applicat, UMR CNRS 7348, SP2MI, Blvd Marie & Pierre Curie Teleport 2, F-86962 Futuroscope, France
[2] De Vinci Res Ctr, De Vinci Higher Educ, Paris, France
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Univ Libanaise, Fac Sci, Lab Math EDST, Hadat, Lebanon
[5] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, Via Univ 4, I-41121 Modena, Italy
关键词
Allen-Cahn/Cahn-Hilliard; Well-posedness; Proliferation term; Asymptotic behavior; Global attractor; Fractal dimension; FE-CR ALLOYS; SPINODAL DECOMPOSITION; COMPUTER-MODELS; ATOMIC-LEVEL; ORDER-DISORDER; CAHN SYSTEM; EQUATION;
D O I
10.1016/j.jmaa.2025.129382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the coupled Allen-Cahn/Cahn-Hilliard equations with a proliferation term, which can model the growth of cancerous tumors and other biological entities. We focus on establishing the existence, uniqueness, and regularity of solutions, as well as analyzing their asymptotic behavior, with particular attention to the existence of finite-dimensional attractors. The system is considered under Dirichlet boundary conditions, and we introduce assumptions on the proliferation term to ensure dissipativity. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:23
相关论文
共 27 条
[1]   Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source [J].
Aristotelous, Andreas C. ;
Karakashian, Ohannes A. ;
Wise, Steven M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1167-1198
[2]   FINITE-DIMENSIONAL EXPONENTIAL ATTRACTOR FOR A MODEL FOR ORDER-DISORDER AND PHASE-SEPARATION [J].
BROCHET, D ;
HILHORST, D ;
NOVICKCOHEN, A .
APPLIED MATHEMATICS LETTERS, 1994, 7 (03) :83-87
[3]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[4]   EVOLUTION-EQUATIONS FOR PHASE-SEPARATION AND ORDERING IN BINARY-ALLOYS [J].
CAHN, JW ;
NOVICKCOHEN, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (3-4) :877-909
[5]   ON A GENERALIZED CAHN-HILLIARD EQUATION WITH BIOLOGICAL APPLICATIONS [J].
Cherfils, Laurence ;
Miranville, Alain ;
Zelik, Sergey .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07) :2013-2026
[6]   The Cahn-Hilliard Equation with Logarithmic Potentials [J].
Cherfils, Laurence ;
Miranville, Alain ;
Zelik, Sergey .
MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) :561-596
[7]  
Derkach V., 2017, Springer Proc. Math. Stat., V215, P23
[8]   A Splitting Method for the Allen-Cahn/Cahn-Hilliard System Coupled with Heat Equation Based on Maxwell-Cattaneo Law [J].
El Khatib, Nader ;
Makki, Ahmad ;
Petcu, Madalina .
APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01)
[9]   Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D [J].
Gal, Ciprian G. ;
Grasselli, Maurizio .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :401-436
[10]   SPINODAL DECOMPOSITION IN FE-CR ALLOYS - EXPERIMENTAL-STUDY AT THE ATOMIC-LEVEL AND COMPARISON WITH COMPUTER-MODELS .2. DEVELOPMENT OF DOMAIN SIZE AND COMPOSITION AMPLITUDE [J].
HYDE, JM ;
MILLER, MK ;
HETHERINGTON, MG ;
CEREZO, A ;
SMITH, GDW ;
ELLIOTT, CM .
ACTA METALLURGICA ET MATERIALIA, 1995, 43 (09) :3403-3413