Sentiment Analysis of Participants Interactions in a Hackathon Context: The Example of a Slack Corpus

被引:0
|
作者
Feislachen, Sarah [1 ]
Garus, Philip [1 ]
Wang, Hong [1 ]
Podkolin, Eduard [1 ]
Schlueter, Sarah [1 ]
Bernd, Nadine Schulze [1 ]
Manske, Sven [2 ]
Nolte, Alexander [1 ]
Chounta, Irene-Angelica [1 ]
机构
[1] Univ Duisburg Essen, Dept Comp Sci & Appl Cognit Sci, Duisburg, Germany
[2] Univ Tartu, Inst Comp Sci, Tartu, Estonia
来源
MUC 2022: PROCEEDINGS OF MENSCH UND COMPUTER 2022 | 2022年
关键词
hackathons; sentiment analysis; natural language processing; emojis; slack; online communication; collaboration; EMOTICONS; COMMUNICATION;
D O I
10.1145/3543758.3547563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the analysis of participants' interactions during an online hackathon using Natural Language Processing (NLP) techniques. In particular, we explored the communication of groups facilitated by Slack focusing on the use of emojis. Our findings suggest that most used emojis are positive, while negative emojis appeared rarely. Sentiment of written messages was overall positive and could be linked to topics such as motivation or achievements. Topics about participants' disappointment regarding their progress or the hackathon organization, technical issues and criticism were associated with negative sentiment. We envision that our work offers insights regarding online communication in group and collaborative contexts with an emphasis on group work and interest-based activities.
引用
收藏
页码:493 / 497
页数:5
相关论文
共 50 条
  • [1] NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis
    Muhammad, Shamsuddeen Hassan
    Adelani, David Ifeoluwa
    Ruder, Sebastian
    Ahmad, Ibrahim Sa'id
    Abdulmumin, Idris
    Bello, Bello Shehu
    Choudhury, Monojit
    Emezue, Chris Chinenye
    Abdullahi, Saheed Salahudeen
    Aremu, Anuoluwapo
    Jorge, Alipio
    Brazdil, Pavel
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 590 - 602
  • [2] The Importance of Context for Sentiment Analysis in Dialogues
    Carvalho, Isabel
    Oliveira, Hugo Goncalo
    Silva, Catarina
    IEEE ACCESS, 2023, 11 : 86088 - 86103
  • [3] Knowledge Represention for Context and Sentiment Analysis
    Fakinlede, Ireti
    Kumar, Vive
    Wen, Dunwei
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2013), 2013, : 493 - 494
  • [4] Building Corpus with Emoticons for Sentiment Analysis
    Li, Changliang
    Wang, Yongguan
    Li, Changsong
    Qi, Ji
    Liu, Pengyuan
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 309 - 318
  • [5] Sinhala Sentiment Analysis using Corpus based Sentiment Lexicon
    Chathuranga, P. D. T.
    Lorensuhewa, S. A. S.
    Kalyani, M. A. L.
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER - 2019), 2019,
  • [6] Annotated Corpus for Sentiment Analysis in Odia Language
    Mohanty, Gaurav
    Mishra, Pruthwik
    Mamidi, Radhika
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 2788 - 2795
  • [7] Spanish Corpus for Sentiment Analysis Towards Brands
    Navas-Loro, Maria
    Rodriguez-Doncel, Victor
    Santana-Perez, Idafen
    Sanchez, Alberto
    SPEECH AND COMPUTER, SPECOM 2017, 2017, 10458 : 680 - 689
  • [8] Constructing a Chinese Conversation Corpus for Sentiment Analysis
    Zhou, Yujun
    Li, Changliang
    Xu, Bo
    Xu, Jiaming
    Yang, Lei
    Xu, Bo
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2017, 2018, 10619 : 578 - 589
  • [9] Sentiment Analysis and Opinion Mining: The EmotiBlog Corpus
    Fernandez, Javi
    Boldrini, Ester
    Manuel Gomez, Jose
    Martinez-Barco, Patricio
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2011, (47): : 179 - 187
  • [10] A Review on Corpus Annotation for Arabic Sentiment Analysis
    Almuqren, Latifah
    Alzammam, Arwa
    Alotaibi, Shahad
    Cristea, Alexandra
    Alhumoud, Sarah
    SOCIAL COMPUTING AND SOCIAL MEDIA: APPLICATIONS AND ANALYTICS, SCSM 2017, PT II, 2017, 10283 : 215 - 225