Data-driven deep learning model for short-term wind power prediction assisted with WGAN-GP data preprocessing

被引:0
|
作者
Wang, Wei [1 ]
Yang, Jian [1 ]
Li, Yihuan [1 ]
Ren, Guorui [1 ]
Li, Kang [2 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, England
关键词
Wind power prediction; Deep learning; Generative adversarial network; Sequence decomposition; reconstruction; Transformer; ALGORITHM;
D O I
10.1016/j.eswa.2025.127068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate data-driven wind power prediction plays an increasingly key role in ensuring the stable operation of wind farms (WFs). However, the historical data of WFs are often limited and noisy, which can significantly impact prediction performance. To ensure the accurate wind power prediction, this paper presents a novel phased model that includes sequence preprocessing, sequence decomposition-reconstruction, and hybrid prediction model. The purpose of sequence preprocessing is to enhance the quality of historical data by combining random sample consensus and isolation forest algorithms for noise screening and a missing value imputation method considering the randomness of the generator in Wasserstein generative adversarial network with gradient penalty (WGAN-GP) model is proposed. To reduce the complexity of the sequence and increase the computational speed, a novel combination method of improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and sample entropy (SE) is proposed, resulting in a high-frequency subsequence and a low-frequency subsequence. Based on temporal convolutional network (TCN), a novel hybrid deep learning model is proposed to handle complex time series. By combining TCN with transformer (TR) or bidirectional gated recurrent unit (BiGRU), the models become more suitable for wind power prediction, and they are employed for different subsequences considering the frequency characteristics. The proposed framework is validated in comparison with 18 other models, the results confirm the efficacy and superiority of the proposed framework, achieving up to 73.50% prediction error (RMSE) reduction.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A New Combination Model for Short-term Wind Power Prediction
    Yin, Zizhong
    Chen, Zhong
    Yin, Dongyang
    Li, Qi
    2015 5TH INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY DEREGULATION AND RESTRUCTURING AND POWER TECHNOLOGIES (DRPT 2015), 2015, : 1869 - 1873
  • [42] Data-Driven Techniques for Short-Term Electricity Price Forecasting through Novel Deep Learning Approaches with Attention Mechanisms
    Laitsos, Vasileios
    Vontzos, Georgios
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    Tsoukalas, Lefteri H.
    ENERGIES, 2024, 17 (07)
  • [43] Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network
    Zhang, Jinhua
    Li, Hui
    Cheng, Peng
    Yan, Jie
    ENERGIES, 2024, 17 (02)
  • [44] An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
    Niksa-Rynkiewicz, Tacjana
    Stomma, Piotr
    Witkowska, Anna
    Rutkowska, Danuta
    Slowik, Adam
    Cpalka, Krzysztof
    Jaworek-Korjakowska, Joanna
    Kolendo, Piotr
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2023, 13 (03) : 197 - 210
  • [45] Using data-driven approach for wind power prediction: A comparative study
    Renani, Ehsan Taslimi
    Elias, Mohamad Fathi Mohamad
    Rahim, Nasrudin Abd.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 118 : 193 - 203
  • [46] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211
  • [47] Short-term wind power prediction based on LSSVM-GSA model
    Yuan, Xiaohui
    Chen, Chen
    Yuan, Yanbin
    Huang, Yuehua
    Tan, Qingxiong
    ENERGY CONVERSION AND MANAGEMENT, 2015, 101 : 393 - 401
  • [48] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211
  • [49] Monthly Arctic sea ice prediction based on a data-driven deep learning model
    Huan, Xiaohe
    Wang, Jielong
    Liu, Zhongfang
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2023, 5 (10):
  • [50] TLS-WGAN-GP: A Generative Adversarial Network Model for Data-Driven Fault Root Cause Location
    Xu, Shicheng
    Xu, Xiaolong
    Gao, Honghao
    Xiao, Fu
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2023, 69 (04) : 850 - 861