Structural design strategies of triboelectric nanogenerators for omnidirectional wind energy harvesting

被引:0
|
作者
Jingu Jeong [1 ]
Eunhwan Jo [2 ]
Jong-An Choi [1 ]
Yunsung Kang [3 ]
Soonjae Pyo [1 ]
机构
[1] Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul
[2] Department of Mechanical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gyeongbuk, Gumi
[3] Department of Precision Mechanical Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Gyeongbuk, Sangju
[4] Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul
关键词
Aeroelastic energy conversion; Omnidirectional wind energy harvesting; Rolling mechanisms; Rotation; Triboelectric nanogenerators;
D O I
10.1186/s40486-025-00224-6
中图分类号
学科分类号
摘要
Omnidirectional wind energy harvesting has gained increasing attention as a means of harnessing the inherently variable and multidirectional flows encountered in real-world environments. Triboelectric nanogenerators (TENGs), which leverage contact electrification and electrostatic induction to convert mechanical motion into electrical power, are particularly well-suited for such applications due to their ability to operate effectively under low-speed and intermittent wind conditions. In this review, we first outline the fundamental triboelectric processes and operating modes that underpin TENG functionality, emphasizing how their low inertia and high-voltage outputs make them compatible with a wide range of wind profiles. We then discuss three predominant device classifications—rotary, aeroelastic, and rolling-based—highlighting their distinct mechanical configurations and capacities for omnidirectional capture. Key examples illustrate how strategically designed rotor geometries, flutter-driven films, and rolling elements can maximize contact–separation events and enhance triboelectric generation under complex airflow patterns. Finally, we examine the major obstacles faced by TENG-based harvesters, including durability, hybrid system design, and intelligent power management. Strategies to overcome these barriers involve wear-resistant materials, adaptive architectures, and advanced circuitry, offering TENG solutions that are feasible in micro- or off-grid scenarios. © The Author(s) 2025.
引用
收藏
相关论文
共 50 条
  • [1] Triboelectric Nanogenerators for Mechanical Energy Harvesting
    Kaur, Navjot
    Pal, Kaushik
    ENERGY TECHNOLOGY, 2018, 6 (06) : 958 - 997
  • [2] Wearable triboelectric nanogenerators for biomechanical energy harvesting
    Zou, Yongjiu
    Raveendran, Vidhur
    Chen, Jun
    NANO ENERGY, 2020, 77
  • [3] Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting
    Wang, Qiman
    Li, Wenhao
    Wang, Kun
    Liao, Yitao
    Zheng, Junjie
    Zhou, Xiongtu
    Lin, Jianpu
    Zhang, Yongai
    Wu, Chaoxing
    NANOMATERIALS, 2022, 12 (22)
  • [4] Blue energy harvesting based on triboelectric nanogenerators (TENG): Structural design, performance optimization, and application prospects
    Ye, Jia-chen
    He, Chun-sen
    Gong, Xiao-ran
    Zhang, Hao-hao
    Li, Xue
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1014
  • [5] Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators
    Sun, Wenpeng
    Ding, Zhuang
    Qin, Zhaoye
    Chu, Fulei
    Han, Qinkai
    NANO ENERGY, 2020, 70
  • [6] Development of novel biomaterial-based rotational triboelectric nanogenerators for wind energy harvesting
    Kamal, Vivek V.
    Rani, L. V. Anitha
    Nair, Devika S.
    Narayan, Dev
    Dhas, Rehan Sunil
    Rani, S.
    Kumar, K. Bindu
    Abraham, Nelsa
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (02):
  • [7] Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting
    Choi, Jong-An
    Jeong, Jingu
    Kang, Mingyu
    Ko, Hee-Jin
    Kim, Taehoon
    Park, Keun
    Kim, Jongbaeg
    Pyo, Soonjae
    NANO ENERGY, 2024, 119
  • [8] Triboelectric nanogenerators for marine energy harvesting and sensing applications
    Radhakrishnan, Sithara
    Joseph, Sherin
    Jelmy, E. J.
    Saji, K. J.
    Sanathanakrishnan, T.
    John, Honey
    RESULTS IN ENGINEERING, 2022, 15
  • [9] Stretchable Triboelectric Nanogenerators for Energy Harvesting and Motion Monitoring
    He, Jiahui
    Liu, Yiming
    Li, Dengfeng
    Yao, Kuanming
    Gao, Zhan
    Yu, Xinge
    IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2020, 1 : 109 - 116
  • [10] A Wind Bell Inspired Triboelectric Nanogenerator for Extremely Low-Speed and Omnidirectional Wind Energy Harvesting
    Huang, Jinlong
    Shao, Jiang
    Zhong, Wei
    Sun, Chao
    Zhang, Gengchen
    Chen, Longyi
    Fang, Jiwen
    Li, Chong
    Wang, Jia
    Feng, Xiaoming
    Zhou, Lijun
    Mi, Hongliang
    Chen, Jiawei
    Dong, Xiaohong
    Liu, Xue
    SMALL METHODS, 2024, 8 (12):