Development and validation of a machine learning model for predicting drug-drug interactions with oral diabetes medications

被引:2
作者
Kha, Quang-Hien [1 ,2 ]
Nguyen, Ngan Thi Kim [3 ]
Le, Nguyen Quoc Khanh [2 ,4 ,5 ]
Kang, Jiunn-Horng [6 ,7 ,8 ]
机构
[1] Taipei Med Univ, Coll Med, Int PhD Program Med, Taipei 110, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] Natl Taiwan Normal Univ, Sch Life Sci, Program Nutr Sci, Taipei 106, Taiwan
[4] Taipei Med Univ, Coll Med, Inserv Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[5] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
[6] Taipei Med Univ, Coll Med, Dept Phys Med & Rehabil, Sch Med, Taipei 110, Taiwan
[7] Taipei Med Univ Hosp, Dept Phys Med & Rehabil, Taipei 110, Taiwan
[8] Taipei Med Univ, Grad Inst Nanomed & Med Engn, Coll Biomed Engn, Taipei 110, Taiwan
关键词
Drug-Drug Interactions; Oral Diabetes Medications; Machine Learning; eXtreme Gradient Boosting; Simplified Molecular Input Line Entry System; Comorbidity Management; TYPE-2; ROSIGLITAZONE; ATORVASTATIN; COMBINATION; METFORMIN;
D O I
10.1016/j.ymeth.2024.10.012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Diabetes management is often complicated by comorbidities, requiring complex medication regimens that increase the risk of drug-drug interactions (DDIs), potentially compromising treatment outcomes or causing toxicity. Although machine learning (ML) models have made strides in DDI prediction, existing approaches lack specificity for oral diabetes medications and face challenges in interpretability. To address these limitations, we propose a novel ML-based framework utilizing the Simplified Molecular Input Line Entry System (SMILES) to encode structural information of oral diabetes drugs. Using this representation, we developed an XGBoost model, selecting molecular features through LASSO. Our dataset, sourced from DrugBank, included 42 oral diabetes drugs and 1,884 interacting drugs, divided into training, validation, and testing sets. The model identified 606 optimal features, achieving an F1-score of 0.8182. SHAP analysis was employed for feature interpretation, enhancing model transparency and clinical relevance. By predicting adverse DDIs, our model offers a valuable tool for clinical decision-making, aiding safer prescription practices. The 606 critical features provide insights into atomic-level interactions, linking computational predictions with biological experiments. We present a classification model specifically designed for predicting DDIs associated with oral diabetes medications, with an openly accessible web application to support diabetes management in multi-drug regimens and comorbidity settings.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 41 条
  • [1] B- and Al-Doped Porous 2D Covalent Organic Frameworks as Nanocarriers for Biguanides and Metformin Drugs
    Adalikwu, Stephen A.
    Louis, Hitler
    Iloanya, Anthony C.
    Edet, Henry O.
    Akem, Martilda U.
    Eno, Ededet A.
    Manicum, Amanda-Lee E.
    [J]. ACS APPLIED BIO MATERIALS, 2022, 5 (12) : 5887 - 5900
  • [2] Detection of potential drug-drug interactions for risk of acute kidney injury: a population-based case-control study using interpretable machine-learning models
    Akimoto, Hayato
    Hayakawa, Takashi
    Nagashima, Takuya
    Minagawa, Kimino
    Takahashi, Yasuo
    Asai, Satoshi
    [J]. FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [3] Prevalence of Cardiovascular and Renal Co-morbidities in Patients with Type 2 Diabetes in the Gulf, a Cross-sectional Observational Study
    Al-Ozairi, Ebaa
    Jallo, Mahir K.
    Hafidh, Khadija
    Alhajeri, Dalal M.
    Ashour, Tarek
    Mahmoud, Eissa F. N.
    Abd ElAal, Zeyad
    Loulou, Maysoon
    [J]. DIABETES THERAPY, 2021, 12 (04) : 1193 - 1207
  • [4] Multimodal CNN-DDI: using multimodal CNN for drug to drug interaction associated events
    Asfand-e-yar, Muhammad
    Hashir, Qadeer
    Shah, Asghar Ali
    Malik, Hafiz Abid Mahmood
    Alourani, Abdullah
    Khalil, Waqar
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [5] Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs
    Bolla, Geetha
    Sarma, Bipul
    Nangia, Ashwini K.
    [J]. CHEMICAL REVIEWS, 2022, 122 (13) : 11514 - 11603
  • [6] Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management
    Chaudhury, Arun
    Duvoor, Chitharanjan
    Dendi, Vijaya Sena Reddy
    Kraleti, Shashank
    Chada, Aditya
    Ravilla, Rahul
    Marco, Asween
    Shekhawat, Nawal Singh
    Montales, Maria Theresa
    Kuriakose, Kevin
    Sasapu, Appalanaidu
    Beebe, Alexandria
    Patil, Naveen
    Musham, Chaitanya K.
    Lohani, Govinda Prasad
    Mirza, Wasique
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2017, 8
  • [7] Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches
    Chen, Meimei
    Yang, Xuemei
    Lai, Xinmei
    Kang, Jie
    Gan, Huijuan
    Gao, Yuxing
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (04)
  • [8] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [9] Effects of rosiglitazone alone and in combination with atorvastatin on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus
    Chu, CS
    Lee, KT
    Lee, MY
    Su, HM
    Voon, WC
    Sheu, SH
    Lai, WT
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2006, 97 (05) : 646 - 650
  • [10] Dong J, 2018, J CHEMINFORMATICS, V10, DOI [10.1186/s13321-018-0270-2, 10.1186/s13321-018-0283-x]