Type-II topological phase transitions of topological skyrmion phases

被引:0
|
作者
Ay, Reyhan [1 ,2 ,3 ]
Winter, Joe H. [1 ,2 ,4 ]
Cook, A. M. [1 ,2 ]
机构
[1] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Izmir Inst Technol, Gulbahce Kampusu, TR-35430 Urla, Izmir, Turkiye
[4] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Scotland
基金
美国国家科学基金会;
关键词
MAGNETIC SKYRMIONS; HALL; EXCITATIONS; STATES;
D O I
10.1103/PhysRevB.111.085141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present minimal toy models for topological skyrmion phases of matter, which generically realize type-II topological phase transitions in effectively noninteracting systems, those which occur without closing of the minimum direct bulk energy gap. We study the bulk-boundary correspondence in detail to show that a nontrivial skyrmion number yields a rich bulk-boundary correspondence. We observe gapless edge states, which are robust against disorder, due to nontrivial skyrmion number. Edge states corresponds to bands, which do not traverse the bulk gap, instead yielding gaplessness due to their overlap in energy and exponential localization on opposite edges of the system. These gapless boundary modes can occur for total Chern number zero, and furthermore correspond to rich real-space spin textures with strong polarization of spin along the real-space edge. By introducing toy models generically exhibiting type-II topological phase transitions and characterizing the bulk-boundary correspondence due to nontrivial skyrmion number in these models, we lay the groundwork for understanding consequences of the quantum skyrmion Hall effect.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Topological Laser in Anomalous Quadrupole Topological Phases
    Lu, Guangtai
    Ota, Yasutomo
    Iwamoto, Satoshi
    LASER & PHOTONICS REVIEWS, 2024, 18 (11)
  • [22] Manipulating Topological Phases in Magnetic Topological Insulators
    Qiu, Gang
    Yang, Hung-Yu
    Chong, Su Kong
    Cheng, Yang
    Tai, Lixuan
    Wang, Kang L.
    NANOMATERIALS, 2023, 13 (19)
  • [23] Inter-quintuple layer coupling and topological phase transitions in the chalcogenide topological insulators
    Shirali, K.
    Shelton, W. A.
    Vekhter, I
    ELECTRONIC STRUCTURE, 2023, 5 (01):
  • [24] Disorder-Driven Collapse of Topological Phases in Photonic Topological Insulator
    Zhang, Hongfang
    Sui, Wenjie
    Zhang, Yu
    Liu, Gangcheng
    Shi, Qiang
    Lv, Zengtao
    Zhang, Dong
    Rong, Chuicai
    Yang, Bing
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (10):
  • [25] Miniband engineering and topological phase transitions in topological-insulator-normal-insulator superlattices
    Krizman, G.
    Assaf, B. A.
    Bauer, G.
    Springholz, G.
    de Vaulchier, L. A.
    Guldner, Y.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [26] Topological Phases in Magnonics
    Zhuo, Fengjun
    Kang, Jian
    Manchon, Aurelien
    Cheng, Zhenxiang
    ADVANCED PHYSICS RESEARCH, 2025, 4 (03):
  • [27] Skyrmion Lattice Topological Hall Effect near Room Temperature
    Leroux, Maxime
    Stolt, Matthew J.
    Jin, Song
    Pete, Douglas V.
    Reichhardt, Charles
    Maiorov, Boris
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Unconventional topological phase transitions in helical Shiba chains
    Pientka, Falko
    Glazman, Leonid I.
    von Oppen, Felix
    PHYSICAL REVIEW B, 2014, 89 (18)
  • [29] Topological quantum phase transitions in metallic Shiba lattices
    Dai, Ning
    Li, Kai
    Yang, Yan-Bin
    Xu, Yong
    PHYSICAL REVIEW B, 2022, 106 (11)
  • [30] Topological Phases of Polaritons in a Cavity Waveguide
    Downing, C. A.
    Sturges, T. J.
    Weick, G.
    Stobinska, M.
    Martin-Moreno, L.
    PHYSICAL REVIEW LETTERS, 2019, 123 (21)