Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch

被引:0
作者
Iebed, Dina [1 ]
Goekler, Tobias [1 ]
van Ingen, Hugo [2 ]
Conibear, Anne C. [1 ]
机构
[1] TU Wien, Inst Appl Synthet Chem, Getreidemarkt 9, A-1060 Vienna, Austria
[2] Univ Utrecht, Bijvoet Ctr Biomol Res, Padualaan 8, NL-3584 CH Utrecht, Netherlands
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
Intrinsically disordered proteins; NMR spectroscopy; Phosphorylation; Posttranslational modifications; Solid phase peptide synthesis; NMR CHEMICAL-SHIFTS; MITOTIC PHOSPHORYLATION; CHROMATIN-STRUCTURE; TORSION ANGLES; PROTEINS; BACKBONE; C-13; H-1;
D O I
10.1002/cbic.202400589
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three-dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein-protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome-binding domain of an intrinsically disordered protein - HMGN1 - using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over-predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
引用
收藏
页数:11
相关论文
共 53 条
  • [1] Accurate structure prediction of biomolecular interactions with AlphaFold 3
    Abramson, Josh
    Adler, Jonas
    Dunger, Jack
    Evans, Richard
    Green, Tim
    Pritzel, Alexander
    Ronneberger, Olaf
    Willmore, Lindsay
    Ballard, Andrew J.
    Bambrick, Joshua
    Bodenstein, Sebastian W.
    Evans, David A.
    Hung, Chia-Chun
    O'Neill, Michael
    Reiman, David
    Tunyasuvunakool, Kathryn
    Wu, Zachary
    Zemgulyte, Akvile
    Arvaniti, Eirini
    Beattie, Charles
    Bertolli, Ottavia
    Bridgland, Alex
    Cherepanov, Alexey
    Congreve, Miles
    Cowen-Rivers, Alexander I.
    Cowie, Andrew
    Figurnov, Michael
    Fuchs, Fabian B.
    Gladman, Hannah
    Jain, Rishub
    Khan, Yousuf A.
    Low, Caroline M. R.
    Perlin, Kuba
    Potapenko, Anna
    Savy, Pascal
    Singh, Sukhdeep
    Stecula, Adrian
    Thillaisundaram, Ashok
    Tong, Catherine
    Yakneen, Sergei
    Zhong, Ellen D.
    Zielinski, Michal
    Zidek, Augustin
    Bapst, Victor
    Kohli, Pushmeet
    Jaderberg, Max
    Hassabis, Demis
    Jumper, John M.
    [J]. NATURE, 2024, 630 (8016) : 493 - 500
  • [2] The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins
    Agarwal, Vinayak
    McShan, Andrew C.
    [J]. NATURE CHEMICAL BIOLOGY, 2024, 20 (08) : 950 - 959
  • [3] Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2
    Alderson, Reid
    Pritisanac, Iva
    Kolaric, Desika
    Moses, Alan M.
    Forman-Kay, Julie D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (44)
  • [4] Beads on a string-nucleosome array arrangements and folding of the chromatin fiber
    Baldi, Sandro
    Korber, Philipp
    Becker, Peter B.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2020, 27 (02) : 109 - 118
  • [5] Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes
    Bergel, M
    Herrera, JE
    Thatcher, BJ
    Prymakowska-Bosak, M
    Vassilev, A
    Nakatani, Y
    Martin, B
    Bustin, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (15) : 11514 - 11520
  • [6] A simple method to predict protein flexibility using secondary chemical shifts
    Berjanskii, MV
    Wishart, DS
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (43) : 14970 - 14971
  • [7] The structural context of posttranslational modifications at a proteome-wide scale
    Bludau, Isabell
    Willems, Sander
    Zeng, Wen-Feng
    Strauss, Maximilian T.
    Hansen, Fynn M.
    Tanzer, Maria C.
    Karayel, Ozge
    Schulman, Brenda A.
    Mann, Matthias
    [J]. PLOS BIOLOGY, 2022, 20 (05)
  • [8] Serine ADP-Ribosylation Depends on HPF1
    Bonfiglio, Juan Jose
    Fontana, Pietro
    Zhang, Qi
    Colby, Thomas
    Gibbs-Seymour, Ian
    Atanassov, Ilian
    Bartlett, Edward
    Zaja, Roko
    Ahel, Ivan
    Matic, Ivan
    [J]. MOLECULAR CELL, 2017, 65 (05) : 932 - +
  • [9] Bustin M, 1996, PROG NUCLEIC ACID RE, V54, P35, DOI 10.1016/S0079-6603(08)60360-8
  • [10] Hidden dynamic signatures drive substrate selectivity in the disordered phosphoproteome
    Cho, Min-Hyung
    Wrabl, James O.
    Taylor, James
    Hilser, Vincent J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (38) : 23606 - 23616