Classification of positive solutions for a weighted integral system on the half-space

被引:0
作者
Liao, Qiuping [1 ]
Wang, Haofeng [1 ]
Xiao, Yingying [1 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Sch Math Sci, Nanchang, Peoples R China
关键词
method of moving spheres; weighted integral system; HARDY-LITTLEWOOD-SOBOLEV; STEIN-WEISS INEQUALITIES; FRACTIONAL INTEGRALS; SHARP CONSTANTS; EQUATIONS; SYMMETRY; UNIQUENESS; EXISTENCE; THEOREMS;
D O I
10.1515/math-2024-0058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the following weighted integral system: { u(x)=integral(n+1)(R)+y(n+1)(beta)f(u(y),v(y))/ divided by x-y divided by(lambda )dy, x is an element of R-+(n+1), v(x)=integral(Rn+1)+y(n+1)(beta)g(u(y),v(y))divided by x-y divided by(lambda)dy, x is an element of R-+(n+1) Under nature structure conditions on f and g, we classify the positive solutions using the method of moving spheres
引用
收藏
页数:15
相关论文
共 47 条
[1]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[2]   Weighted inequalities and Stein-Weiss potentials [J].
Beckner, William .
FORUM MATHEMATICUM, 2008, 20 (04) :587-606
[3]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[4]  
Chang SYA, 1997, MATH RES LETT, V4, P91, DOI 10.4310/MRL.1997.v4.n1.a9
[5]   Stein-Weiss inequalities with the fractional Poisson kernel [J].
Chen, Lu ;
Liu, Zhao ;
Lu, Guozhen ;
Tao, Chunxia .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (05) :1289-1308
[6]   Existence of extremal functions for the Stein-Weiss inequalities on the Heisenberg group [J].
Chen, Lu ;
Lu, Guozhen ;
Tao, Chunxia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (04) :1112-1138
[7]   REVERSE STEIN-WEISS INEQUALITIES AND EXISTENCE OF THEIR EXTREMAL FUNCTIONS [J].
Chen, Lu ;
Liu, Zhao ;
Lu, Guozhen ;
Tao, Chunxia .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) :8429-8450
[8]   Symmetry and Regularity of Solutions to the Weighted Hardy-Sobolev Type System [J].
Chen, Lu ;
Liu, Zhao ;
Lu, Guozhen .
ADVANCED NONLINEAR STUDIES, 2016, 16 (01) :1-13
[9]   A New Family of Sharp Conformally Invariant Integral Inequalities [J].
Chen, Shibing .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (05) :1205-1220
[10]  
Chen W., 2005, Disc. Cont. Dynamics Sys., P164