Semiconductor Physics and Characteristics of Tunable Negative Electron Affinity Photocathode with High Quantum Efficiency

被引:0
|
作者
Priyoti, Anika Tabassum [1 ]
Ahsan, Ragib [1 ]
Chae, Hyun Uk [1 ]
Vazquez, Juan Sanchez [1 ]
Kapadia, Rehan [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
2024 JOINT INTERNATIONAL VACUUM ELECTRONICS CONFERENCE AND INTERNATIONAL VACUUM ELECTRON SOURCES CONFERENCE, IVEC + IVESC 2024 | 2024年
关键词
Hot electron; Fowler-Nordheim tunneling; Graphene; Palladium;
D O I
10.1109/IVECIVESC60838.2024.10694892
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Negative electron affinity (NEA) photocathodes have long been pursued as an efficient electron source due to their enhanced quantum efficiency, narrow energy spread and high brightness or current density. Conventionally, NEA is achieved by applying a thin layer of cesium-rich oxide onto a semiconductor surface, rendering it highly reactive, unstable, and susceptible to environmental conditions [1]. In a recent investigation focused on electrostatically generated tunable NEA surface [2], an NEA photocathode is explored that exhibits remarkable stability in ambient conditions and allows for electronic tuning of its electron affinity. The present work discusses an enhanced iteration of this device, characterized by improved quantum efficiency and reliability.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Kondo physics in tunable semiconductor nanowire quantum dots
    Jespersen, Thomas Sand
    Aagesen, Martin
    Sorensen, Claus
    Lindelof, Poul Erik
    Nygard, Jesper
    PHYSICAL REVIEW B, 2006, 74 (23)
  • [32] Hot Electron Photoemission from Tunable Electron Affinity Semiconductor Cathodes
    Ahsan, Ragib
    Priyoti, Anika Tabassum
    Meng, Jun
    Jacobs, Ryan
    Booske, John
    Kapadia, Rehan
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (11) : 17445 - 17453
  • [33] Electrostatically Generated Air-Stable Negative Electron Affinity Silicon Photocathode
    Priyoti, Anika Tabassum
    Ahsan, Ragib
    Chae, Hyun Uk
    Das, Subrata
    Sanchez Vazquez, Juan
    Wu, Zezhi
    Kim, Hee Gon
    Yu, Yiyan
    Kapadia, Rehan
    ACS PHOTONICS, 2023, 10 (12) : 4501 - 4508
  • [34] Spectral response variation of a negative-electron-affinity photocathode in the preparation process
    Liu, Lei
    Du, Yujie
    Chang, Benkang
    Qian, Yunsheng
    APPLIED OPTICS, 2006, 45 (24) : 6094 - 6098
  • [35] Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system
    Sen, P
    Pickard, DS
    Schneider, JE
    McCord, MA
    Pease, RF
    Baum, AW
    Costello, KA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06): : 3380 - 3384
  • [36] Atomic hydrogen cleaning of InP(100) for preparation of a negative electron affinity photocathode
    Elamrawi, KA
    Hafez, MA
    Elsayed-Ali, HE
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (08) : 4568 - 4572
  • [37] Role of oxygen in semiconductor negative electron affinity photocathodes
    Machuca, F
    Liu, Z
    Sun, Y
    Pianetta, P
    Spicer, WE
    Pease, RFW
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06): : 2721 - 2725
  • [38] The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure
    Chanlek, N.
    Herbert, J. D.
    Jones, R. M.
    Jones, L. B.
    Middleman, K. J.
    Militsyn, B. L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (05)
  • [39] CHARACTERISTICS OF THE ENERGY-SPECTRUM OF ELECTRONS NEAR THE SURFACE OF A SEMICONDUCTOR WITH A NEGATIVE ELECTRON-AFFINITY
    GORSHKOVA, TA
    SHADRIN, VD
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1988, 22 (02): : 140 - 144
  • [40] Analysis of negative electron affinity InGaN photocathode by temperature-programed desorption method
    Kashima, Masahiro
    Sato, Daiki
    Koizumi, Atsushi
    Nishitani, Tomohiro
    Honda, Yoshio
    Amano, Hiroshi
    Iijima, Hokuto
    Meguro, Takashi
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (06):