In-Vehicle Network Anomaly Detection Based on a Graph Attention Network

被引:0
|
作者
Luo, Feng [1 ]
Luo, Cheng [1 ]
Wang, Jiajia [1 ]
Li, Zhihao [1 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai, Peoples R China
来源
SAE INTERNATIONAL JOURNAL OF CONNECTED AND AUTOMATED VEHICLES | 2025年 / 8卷 / 04期
关键词
In-vehicle networking; Anomaly detection; Graph attention networks; Graph structure learning; INTRUSION DETECTION SYSTEM;
D O I
10.4271/12-08-04-0034
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The increased connectivity of vehicles expands the attack surface of in-vehicle networks, enabling attackers to infiltrate through external interfaces and inject malicious traffic. These malicious flows often contain anomalous semantic information, potentially leading to misleading control instructions or erroneous decisions. While most semantic-based anomaly detection methods for in-vehicle networks focus on extracting semantic context, they often overlook interactions and associations between multiple semantics, resulting in a high false positive rate (FPR). To address these challenges, the Adaptive Structure Graph Attention Network Model (AS-GAT) is proposed for in-vehicle network anomaly detection. Our approach combines a semantic extractor with a continuously updated graph structure learning method based on attention weight similarity constraints. The semantic extractor identifies semantic features within messages, while the graph structure learning module adaptively updates the graph structure based on attention weights between semantics. This model effectively learns relationships between multiple semantics in in-vehicle network packets, thereby enhancing anomaly detection accuracy. A case study on a CAN-FD dataset from real vehicles demonstrates that using AS-GAT achieves an F1 score of 97.56% in anomaly detection, outperforming baseline methods by effectively identifying attack packets causing abnormal semantic time series changes, such as fuzzing, spoofing, and replay attacks. Additional experiments on two public datasets, SWaT and WADI, further validate AS-GAT's superior anomaly detection performance compared to baseline models, highlighting the universal applicability of our approach.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Research on Anomaly Network Detection Based on Self-Attention Mechanism
    Hu, Wanting
    Cao, Lu
    Ruan, Qunsheng
    Wu, Qingfeng
    SENSORS, 2023, 23 (11)
  • [42] DAN: Neural network based on dual attention for anomaly detection in ICS
    Xu, Lijuan
    Wang, Bailing
    Zhao, Dawei
    Wu, Xiaoming
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [43] Security anomaly detection for enterprise management network based on attention mechanism
    You, Zhaohan
    Zheng, Yucai
    FRONTIERS IN PHYSICS, 2025, 13
  • [44] A co-occurrence matrix based masquerade detection method in in-vehicle network
    Zhang, Bin
    Xiao, Xi
    Zhang, Weizhe
    Sangaiah, Arun Kumar
    Zhou, Ying
    Liu, Xinyu
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (05):
  • [45] MST-GAT: A multimodal spatial-temporal graph attention network for time series anomaly detection
    Ding, Chaoyue
    Sun, Shiliang
    Zhao, Jing
    INFORMATION FUSION, 2023, 89 : 527 - 536
  • [46] Many-Objective Optimization Based Intrusion Detection for In-Vehicle Network Security
    Zhang, Jiangjiang
    Gong, Bei
    Waqas, Muhammad
    Tu, Shanshan
    Chen, Sheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 15051 - 15065
  • [47] Vulnerability of Deep Learning Model based Anomaly Detection in Vehicle Network
    Wang, Yi
    Chia, Dan Wei Ming
    Ha, Yajun
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 293 - 296
  • [48] Airway Anomaly Detection by Prototype-Based Graph Neural Network
    Zhao, Tianyi
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 195 - 204
  • [49] A graph encoder–decoder network for unsupervised anomaly detection
    Mahsa Mesgaran
    A. Ben Hamza
    Neural Computing and Applications, 2023, 35 (32) : 23521 - 23535
  • [50] RegraphGAN: A graph generative adversarial network model for dynamic network anomaly detection
    Guo, Dezhi
    Liu, Zhaowei
    Li, Ranran
    NEURAL NETWORKS, 2023, 166 : 273 - 285