Public opinion prediction on social media by using machine learning methods

被引:0
|
作者
Zhang, An-Jun [1 ]
Ding, Ru-Xi [1 ,2 ,3 ]
Pedrycz, Witold [4 ]
Chang, Zhonghao [1 ]
机构
[1] Beijing Inst Technol, Sch Management, Beijing 10081, Peoples R China
[2] Beijing Inst Technol, Ctr Sustainable Dev & Smart Decis, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Hebei Province, Peoples R China
[4] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada
关键词
Public opinion prediction; Leading opinions; Susceptible individuals removed model with death and birth rate; Machine learning; Online social network; MODEL;
D O I
10.1016/j.eswa.2024.126287
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the willingness of the public to express their opinions on social media has extremely increased, being facilitated by the online social network. Asa result, public opinion events pose challenges for decision makers in public opinion prediction technologies. However, the shortcomings of existing models include low accuracy of the clustering method, leading opinion detection, and scale prediction of public opinion. Emerging from this objective, this paper introduces a Public Opinion Prediction (POP) model whose predictive accuracy and computational efficiency are transformative by employing machine learning methods, which can well predict not only the scale and trend, but also can accurately predict the opinions of the public on social media. The POP model consists of three parts: (1) the Preference-based online social Network Clustering(NPC) method to decrease the dimensions, (2) the improved Whale Optimization Algorithm based on the Leading Opinion Detection(WOA-LOD) algorithm to detect the leading opinions in online social networks, and (3) the Susceptible Individuals Removed model with Death and Birth rate(SIRDB) to predict and simulate the development tendency and scales of the public opinions. By implementing the POP model in real data which includes two datasets with 359 and 898 users respectively in Weibo social media and comparing it with other existing methods. Asa result, NPC and WOA-LOD achieve a 60%-70% improvement inaccuracy for cluster method and leading opinions detection; SIRDB achieves a greater than 95% improvement when comparing other traditional methods on the accuracy of scale prediction. All experiment results show the POP model exhibits state-of-the-art performance in not only detecting the leading opinions but also prediting the scale and tendency, which performs perfectly in practical management.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Software Effort Prediction using Statistical and Machine Learning Methods
    Malhotra, Ruchika
    Jain, Ankita
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2011, 2 (01) : 145 - 152
  • [42] Chronic Kidney Disease Prediction Using Machine Learning Methods
    Ekanayake, Imesh Udara
    Herath, Damayanthi
    MERCON 2020: 6TH INTERNATIONAL MULTIDISCIPLINARY MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2020, : 260 - 265
  • [43] Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods
    Paik, E. Sun
    Lee, Jeong-Won
    Park, Jeong-Yeol
    Kim, Ju-Hyun
    Kim, Mijung
    Kim, Tae-Joong
    Choi, Chet Hun
    Kim, Byoung-Gie
    Bae, Duk-Soo
    Seo, Sung Wook
    JOURNAL OF GYNECOLOGIC ONCOLOGY, 2019, 30 (04)
  • [44] Prediction of Hydrodynamic Parameters of the State of the Bottomhole Zone of Wells Using Machine Learning Methods
    Soromotin, A. V.
    Martyushev, D. A.
    Melekhin, A. A.
    GEORESURSY, 2024, 26 (01) : 109 - 117
  • [45] Analysis and prediction of railway track longitudinal level using multiple machine learning methods
    Han, Lei
    Liao, Yingying
    Wang, Haoyu
    Zhang, Hougui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [46] Detection of Cyberbullying in Social Networks Using Machine Learning Methods
    Altay, Elif Varol
    Alatas, Bilal
    2018 INTERNATIONAL CONGRESS ON BIG DATA, DEEP LEARNING AND FIGHTING CYBER TERRORISM (IBIGDELFT), 2018, : 87 - 91
  • [47] Social Media Analysis with Machine Learning
    Khasanova, Adelya M.
    Pasechnik, Margarita O.
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 32 - 35
  • [48] Severity Prediction with Machine Learning Methods
    Geyik, Buket
    Kara, Medine
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 382 - 388
  • [49] Prediction of vaccine hesitancy based on social media traffic among Israeli parents using machine learning strategies
    Shirly Bar-Lev
    Shahar Reichman
    Zohar Barnett-Itzhaki
    Israel Journal of Health Policy Research, 10
  • [50] Prediction of vaccine hesitancy based on social media traffic among Israeli parents using machine learning strategies
    Bar-Lev, Shirly
    Reichman, Shahar
    Barnett-Itzhaki, Zohar
    ISRAEL JOURNAL OF HEALTH POLICY RESEARCH, 2021, 10 (01)