Public opinion prediction on social media by using machine learning methods

被引:0
|
作者
Zhang, An-Jun [1 ]
Ding, Ru-Xi [1 ,2 ,3 ]
Pedrycz, Witold [4 ]
Chang, Zhonghao [1 ]
机构
[1] Beijing Inst Technol, Sch Management, Beijing 10081, Peoples R China
[2] Beijing Inst Technol, Ctr Sustainable Dev & Smart Decis, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Hebei Province, Peoples R China
[4] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada
关键词
Public opinion prediction; Leading opinions; Susceptible individuals removed model with death and birth rate; Machine learning; Online social network; MODEL;
D O I
10.1016/j.eswa.2024.126287
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the willingness of the public to express their opinions on social media has extremely increased, being facilitated by the online social network. Asa result, public opinion events pose challenges for decision makers in public opinion prediction technologies. However, the shortcomings of existing models include low accuracy of the clustering method, leading opinion detection, and scale prediction of public opinion. Emerging from this objective, this paper introduces a Public Opinion Prediction (POP) model whose predictive accuracy and computational efficiency are transformative by employing machine learning methods, which can well predict not only the scale and trend, but also can accurately predict the opinions of the public on social media. The POP model consists of three parts: (1) the Preference-based online social Network Clustering(NPC) method to decrease the dimensions, (2) the improved Whale Optimization Algorithm based on the Leading Opinion Detection(WOA-LOD) algorithm to detect the leading opinions in online social networks, and (3) the Susceptible Individuals Removed model with Death and Birth rate(SIRDB) to predict and simulate the development tendency and scales of the public opinions. By implementing the POP model in real data which includes two datasets with 359 and 898 users respectively in Weibo social media and comparing it with other existing methods. Asa result, NPC and WOA-LOD achieve a 60%-70% improvement inaccuracy for cluster method and leading opinions detection; SIRDB achieves a greater than 95% improvement when comparing other traditional methods on the accuracy of scale prediction. All experiment results show the POP model exhibits state-of-the-art performance in not only detecting the leading opinions but also prediting the scale and tendency, which performs perfectly in practical management.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Earnings management visualization and prediction using machine learning methods
    Veganzones, David
    Severin, Eric
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2025, 56
  • [32] Snow avalanche hazard prediction using machine learning methods
    Choubin, Bahram
    Borji, Moslem
    Mosavi, Amir
    Sajedi-Hosseini, Farzaneh
    Singh, Vijay P.
    Shamshirband, Shahaboddin
    JOURNAL OF HYDROLOGY, 2019, 577
  • [33] Prediction of Cesarean Childbirth using Ensemble Machine Learning Methods
    Khan, Nafiz Imtiaz
    Mahmud, Tahasin
    Islam, Muhammad Nazrul
    Mustafina, Sumaiya Nuha
    22ND INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES (IIWAS2020), 2020, : 331 - 339
  • [34] Prediction of Phage Virion Proteins Using Machine Learning Methods
    Barman, Ranjan Kumar
    Chakrabarti, Alok Kumar
    Dutta, Shanta
    MOLECULES, 2023, 28 (05):
  • [35] BOD5 Prediction Using machine learning methods
    Ooi, Kai Sheng
    Chen, Zhiyuan
    Poh, Phaik Eong
    Cui, Jian
    WATER SUPPLY, 2022, 22 (01) : 1168 - 1182
  • [36] Detection of Cyberbullying on Social Media Platforms Using Machine Learning
    Ali, Mohammad Usmaan
    Lefticaru, Raluca
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 220 - 233
  • [37] Detecting Virtual Harassment in Social Media Using Machine Learning
    Benassou, Lina Feriel
    Bendaouia, Safa
    Salem, Osman
    Mehaoua, Ahmed
    MACHINE LEARNING FOR NETWORKING, MLN 2023, 2024, 14525 : 185 - 198
  • [38] Prediction of Parkinson's Disease Using Machine Learning Methods
    Zhang, Jiayu
    Zhou, Wenchao
    Yu, Hongmei
    Wang, Tong
    Wang, Xiaqiong
    Liu, Long
    Wen, Yalu
    BIOMOLECULES, 2023, 13 (12)
  • [39] Crime Prediction Methods Based on Machine Learning: A Survey
    Yin, Junxiang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 4601 - 4629
  • [40] A comparison of machine learning methods for ozone pollution prediction
    Pan, Qilong
    Harrou, Fouzi
    Sun, Ying
    JOURNAL OF BIG DATA, 2023, 10 (01)