Public opinion prediction on social media by using machine learning methods

被引:0
|
作者
Zhang, An-Jun [1 ]
Ding, Ru-Xi [1 ,2 ,3 ]
Pedrycz, Witold [4 ]
Chang, Zhonghao [1 ]
机构
[1] Beijing Inst Technol, Sch Management, Beijing 10081, Peoples R China
[2] Beijing Inst Technol, Ctr Sustainable Dev & Smart Decis, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Hebei Province, Peoples R China
[4] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada
关键词
Public opinion prediction; Leading opinions; Susceptible individuals removed model with death and birth rate; Machine learning; Online social network; MODEL;
D O I
10.1016/j.eswa.2024.126287
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, the willingness of the public to express their opinions on social media has extremely increased, being facilitated by the online social network. Asa result, public opinion events pose challenges for decision makers in public opinion prediction technologies. However, the shortcomings of existing models include low accuracy of the clustering method, leading opinion detection, and scale prediction of public opinion. Emerging from this objective, this paper introduces a Public Opinion Prediction (POP) model whose predictive accuracy and computational efficiency are transformative by employing machine learning methods, which can well predict not only the scale and trend, but also can accurately predict the opinions of the public on social media. The POP model consists of three parts: (1) the Preference-based online social Network Clustering(NPC) method to decrease the dimensions, (2) the improved Whale Optimization Algorithm based on the Leading Opinion Detection(WOA-LOD) algorithm to detect the leading opinions in online social networks, and (3) the Susceptible Individuals Removed model with Death and Birth rate(SIRDB) to predict and simulate the development tendency and scales of the public opinions. By implementing the POP model in real data which includes two datasets with 359 and 898 users respectively in Weibo social media and comparing it with other existing methods. Asa result, NPC and WOA-LOD achieve a 60%-70% improvement inaccuracy for cluster method and leading opinions detection; SIRDB achieves a greater than 95% improvement when comparing other traditional methods on the accuracy of scale prediction. All experiment results show the POP model exhibits state-of-the-art performance in not only detecting the leading opinions but also prediting the scale and tendency, which performs perfectly in practical management.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods
    Tian, Jianwei
    Qi, Chongchong
    Sun, Yingfeng
    Yaseen, Zaher Mundher
    Pham, Binh Thai
    ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 3455 - 3471
  • [22] Prediction of the Delay Time of Public Transportation Using Machine Learning
    Piaskowska, Alicja
    Hernes, Marcin
    Walaszczyk, Ewa
    Kozina, Agata
    Czerniachowska, Kateryna
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PART I, 2024, 2165 : 283 - 294
  • [23] Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study
    Alkesaiberi, Abdulelah
    Harrou, Fouzi
    Sun, Ying
    ENERGIES, 2022, 15 (07)
  • [24] Rumor Detection Using Machine Learning Techniques on Social Media
    Kumar, Akshi
    Sangwan, Saurabh Raj
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, VOL 2, 2019, 56 : 213 - 221
  • [25] Offensive Language Detection on Social Media using Machine Learning
    Abdrakhmanov, Rustam
    Kenesbayev, Serik Muktarovich
    Berkimbayev, Kamalbek
    Toikenov, Gumyrbek
    Abdrashova, Elmira
    Alchinbayeva, Oichagul
    Ydyrys, Aizhan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 575 - 582
  • [26] Using Machine Learning to Track Disability Discourse on Social Media
    Kumi, Sandra
    Snow, Charles
    Marfo-Gyimah, Joseph
    Lomotey, Richard K.
    Deters, Ralph
    2024 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH 2024, 2024, : 141 - 150
  • [27] Sentiment Analysis of Social Media Networks Using Machine Learning
    Abd El-Jawad, Mohammed H.
    Hodhod, Rania
    Omar, Yasser M. K.
    2018 14TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO), 2018, : 174 - 176
  • [28] The role of social media in shaping visual culture and identity using machine learning methods with featuring engineering
    Yang, Qian
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 349 - 357
  • [29] Prediction of tensile strength of concrete using the machine learning methods
    Bagher Shemirani A.
    Lawaf M.P.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1207 - 1223
  • [30] Mobile Service Experience Prediction Using Machine Learning Methods
    Yigit, Ibrahim Onuralp
    Ciftci, Selami
    Kalyoncu, Feyzullah Alim
    Kaya, Tolga
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,