Modeling the performance of electrosprayed catalyst layers in the cathode of polymer electrolyte membrane fuel cells

被引:1
|
作者
Garcia-Salaberri, Pablo A. [1 ]
Duque, Luis [2 ]
Folgado, Maria Antonia [2 ]
Diaz-Alvarez, Ester [2 ]
Chaparro, Antonio M.
机构
[1] Univ Carlos III Madrid, Dept Ingn Term & Fluidos, Leganes 28911, Spain
[2] CIEMAT, Dept Energia, Avda Complutense 40, Madrid 28040, Spain
关键词
Catalyst layer; Electrospray; Performance; PEMFC; Water management; Modeling; PROTON-EXCHANGE MEMBRANE; GAS-DIFFUSION LAYERS; MOLECULAR-DYNAMICS; WATER TRANSPORT; NEXT-GENERATION; PEMFC ELECTRODE; IONOMER; DEPOSITION; FABRICATION; HYDROGEN;
D O I
10.1016/j.fuel.2024.133175
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Catalyst layers produced by electrospray (ES) have shown to be a viable route to improve the performance of polymer electrolyte membrane fuel cells (PEMFCs) due to their good ionic and mass transport properties. In this work, the behavior of ES cathodes is examined numerically for the first time. A model accounting for macroscopic transport in the flow field and in the membrane electrode assembly (MEA) is coupled to a microscopic CL model. The results show that the ES behavior can be explained by a particular multiscale arrangement of liquid water. ES reduces the tortuosity of the ionomer conduction network and promotes water uptake in the ionomer. However, this higher water uptake is accompanied in ES by superhydrophobicity at macroscale (theta(cl) similar or equal to 150 degrees) resulting from the dendritic morphology of the pore surface (Cassie-Baxter type). Superhydrophobicity reduces free liquid water in pores (i.e., liquid water not dissolved in the ionomer), and thereby the oxygen transport resistance. As a result, the performance is improved both under oxygen limiting and self-humidifying conditions. In addition, the optimal ionomer mass fraction of ES is lower than the conventional value (0.15 vs. 0.3) and the ionomer distribution is more uniform, which leads to an improved performance at low Pt loading.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Modeling of wetting phenomena in cathode catalyst layers for PEM fuel cells
    Olbrich, W.
    Kadyk, T.
    Sauter, U.
    Eikerling, M.
    ELECTROCHIMICA ACTA, 2022, 431
  • [42] Modeling water phenomena in the cathode side of polymer electrolyte fuel cells
    Zhang, Yufan
    Agravante, Gerard
    Kadyk, Thomas
    Eikerling, Michael H.
    ELECTROCHIMICA ACTA, 2023, 452
  • [43] Investigating the effect of solvent composition on ink structure and crack formation in polymer electrolyte membrane fuel cell catalyst layers
    Woo, Seong Hyeon
    Kim, Sungmin
    Woo, Seunghee
    Park, Seok-Hee
    Kang, Yun Sik
    Jung, Namgee
    Yim, Sung-Dae
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (10) : 2455 - 2462
  • [44] Multivariable optimization studies of cathode catalyst layer of a polymer electrolyte membrane fuel cell
    Srinivasarao, M.
    Bhattacharyya, D.
    Rengaswamy, R.
    Narasimhan, S.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (1A) : 10 - 22
  • [45] Carbon-supported hafnium oxynitride as cathode catalyst for polymer electrolyte membrane fuel cells
    Chisaka, Mitsuharu
    Iijima, Tomohiro
    Yaguchi, Tatsuro
    Sakurai, Yoji
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4581 - 4588
  • [47] Effect of Polytetrafluoroethylene Particles in Cathode Catalyst Layer Based on Carbon Nanotube for Polymer Electrolyte Membrane Fuel Cells
    Weerathunga, Don Terrence Dhammika
    Jayawickrama, Samindi Madhubha
    Phua, Yin Kan
    Nobori, Kazutaka
    Fujigaya, Tsuyohiko
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2019, 92 (12) : 2038 - 2042
  • [48] Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers
    Miao, Zhili
    Yu, Hongmei
    Song, Wei
    Hao, Lixing
    Shao, Zhigang
    Shen, Qiang
    Hou, Junbo
    Yi, Baolian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (11) : 5552 - 5557
  • [49] Coupled continuum and network model framework to study catalyst layers of polymer electrolyte fuel cells
    Liu, Jiangjin
    Medici, Ezequiel
    Haug, Andrew T.
    Cullen, David A.
    Tajiri, Kazuya
    Allen, Jeffrey S.
    V. Zenyuk, Iryna
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (40) : 17749 - 17761
  • [50] Slot-die-coating operability windows for polymer electrolyte membrane fuel cell cathode catalyst layers
    Creel, Erin B.
    Tjiptowidjojo, Kristianto
    Lee, J. Alex
    Livingston, Kelsey M.
    Schunk, P. Randall
    Bell, Nelson S.
    Serov, Alexey
    Wood, David L., III
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 610 : 474 - 485