Bounded and periodic solutions of quasilinear parabolic equations in time-dependent domains

被引:0
|
作者
Nakao, Mitsuhiro [1 ]
机构
[1] JOURNAL OF MOLECULAR STRUCTURE
来源
JOURNAL OF DIFFERENTIAL EQUATIONS | 1600年 / 0卷 / 00期
关键词
Quasilinear parabolic equation; Time-dependent domain; Periodic solution;
D O I
暂无
中图分类号
学科分类号
摘要
We show the existence and uniqueness of the bounded or periodic solution for the quasilinear parabolic equation of the form u(t)-div(sigma(|del u|(2))del u)=f(x,t) in Q(-infinity,infinity) (1.1) with the boundary condition u(t)|(partial derivative Omega)(t)=0, where Omega(t) is a bounded domain in R-N for each t is an element of R and Q(-infinity,infinity)=boolean OR-infinity<t= 0,sigma(v(2))=log(1+v(2)) and sigma(v(2))=|v|(m)/1+v(2),m >= 1. We derive a precise estimate for sup(-infinity<t2</SUP>+
引用
收藏
页码:0022-2860 / 1872-8014
页数:1337
相关论文
共 50 条