Applying Artificial Intelligence in Construction Management: A Scoping Review

被引:0
作者
Lai, Jianying [1 ]
Chong, Heap-Yih [1 ]
Qin, Bin [2 ]
Liao, Ling Xia [3 ]
Chao, Han-Chieh [4 ,5 ]
机构
[1] Nanjing Audit Univ, Jiangsu Key Lab Publ Project Audit, Nanjing, Peoples R China
[2] Guilin Univ Aerosp Technol, Informat Ctr, Guilin, Peoples R China
[3] Guilin Univ Aerosp Technol, Sch Elect Informat & Automat, Guilin, Peoples R China
[4] Tamkang Univ, Dept Artificial Intelligence, Taipei, Taiwan
[5] UCSI Univ, Inst Comp Sci & Innovat, Kuala Lumpur, Malaysia
来源
JOURNAL OF INTERNET TECHNOLOGY | 2025年 / 26卷 / 01期
关键词
Construction management; Artificial intelligence; Construction; 4.0; Research framework; Scoping review;
D O I
10.70003/160792642025012601001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the growth of artificial intelligence (AI) and Industry 4.0, construction management has entered a phase of rapid digital transformation. In order to effectively adopt digital applications of construction management, this paper aims to identify the specific applications of AI in construction management from the perspective of Construction 4.0, especially when applying technologies from Industry 4.0. A scoping review methodology was used to explore the limited literature in this research area. 60 articles were selected to analyze the state of the art of AI applications in construction management, especially for schedule management, cost management, quality management, and health and safety management. This review shows that AI has mainly been used in the preliminary design and construction phases of the above management areas, and proposes a research framework to highlight the contemporary development and needs for AI integration in construction management. The main contributions of this paper are its practical exploration of AI applications in construction management, its human- centered approach to AI adoption, and the introduction of a novel research framework to guide industry practitioners in AI integration.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 66 条
  • [1] Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges
    Abioye, Sofiat O.
    Oyedele, Lukumon O.
    Akanbi, Lukman
    Ajayi, Anuoluwapo
    Delgado, Juan Manuel Davila
    Bilal, Muhammad
    Akinade, Olugbenga O.
    Ahmed, Ashraf
    [J]. JOURNAL OF BUILDING ENGINEERING, 2021, 44
  • [2] Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A
    Aharonian, F.
    An, Q.
    Axikegu
    Bai, L. X.
    Bai, Y. X.
    Bao, Y. W.
    Bastieri, D.
    Bi, X. J.
    Bi, Y. J.
    Cai, H.
    Cai, J. T.
    Cao, Z.
    Chang, J.
    Chang, J. F.
    Chang, X. C.
    Chen, B. M.
    Chen, J.
    Chen, L.
    Chen, M. J.
    Chen, M. L.
    Chen, Q. H.
    Chen, S. H.
    Chen, S. Z.
    Chen, T. L.
    Chen, X. L.
    Chen, Y.
    Cheng, N.
    Cheng, Y. D.
    Cui, S. W.
    Cui, X. H.
    Cui, Y. D.
    Dai, B. Z.
    Dai, H. L.
    Dai, Z. G.
    Danzengluobu
    della Volpe, D.
    Piazzoli, B. D'Ettorre
    Dong, X. J.
    Fan, J. H.
    Fan, Y. Z.
    Fan, Z. X.
    Fang, J.
    Fang, K.
    Feng, C. F.
    Feng, L.
    Feng, S. H.
    Feng, Y. L.
    Gao, B.
    Gao, C. D.
    Gao, Q.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (24)
  • [3] Computer vision framework for crack detection of civil infrastructure-A review
    Ai, Dihao
    Jiang, Guiyuan J.
    Lam, Siew-Kei
    He, Peilan
    Li, Chengwu
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 117
  • [4] Exploring factors behind project scope creep - stakeholders' perspective
    Ajmal, Mian
    Khan, Mehmood
    Al-Yafei, Hanan
    [J]. INTERNATIONAL JOURNAL OF MANAGING PROJECTS IN BUSINESS, 2020, 13 (03) : 483 - 504
  • [5] A bibliometric review of the status and emerging research trends in construction safety management technologies
    Akinlolu, Mariam
    Haupt, Theo C.
    Edwards, David John
    Simpeh, Fredrick
    [J]. INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT, 2022, 22 (14) : 2699 - 2711
  • [6] Deep learning in the construction industry: A review of present status and future innovations
    Akinosho, Taofeek D.
    Oyedele, Lukumon O.
    Bilal, Muhammad
    Ajayi, Anuoluwapo O.
    Delgado, Manuel Davila
    Akinade, Olugbenga O.
    Ahmed, Ashraf A.
    [J]. JOURNAL OF BUILDING ENGINEERING, 2020, 32
  • [7] ANN prediction model of final construction cost at an early stage
    Al-Gahtani, Khalid S.
    Alsugair, Abdullah M.
    Alsanabani, Naif M.
    Alabduljabbar, Abdulmajeed A.
    Almohsen, Abdulmohsen S.
    [J]. JOURNAL OF ASIAN ARCHITECTURE AND BUILDING ENGINEERING, 2025, 24 (02) : 775 - 799
  • [8] A model utilizing the artificial neural network in cost estimation of construction projects in Jordan
    Al-Tawal, Dareen Ryied
    Arafah, Mazen
    Sweis, Ghaleb Jalil
    [J]. ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT, 2021, 28 (09) : 2466 - 2488
  • [9] Forecasting the Final Contract Cost on the Basis of the Owner's Cost Estimation Using an Artificial Neural Network
    Alsugair, Abdulah M. M.
    Alsanabani, Naif M. M.
    Al-Gahtani, Khalid S. S.
    [J]. BUILDINGS, 2023, 13 (03)
  • [10] Automated Methods and Systems for Construction Planning and Scheduling: Critical Review of Three Decades of Research
    Amer, Fouad
    Koh, Hui Yi
    Golparvar-Fard, Mani
    [J]. JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2021, 147 (07)