Geniposide ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β/Smad and p38MAPK signaling pathways

被引:1
|
作者
Yin, Jian-Bin [1 ,2 ,3 ]
Wang, Ying-Xia [4 ]
Fan, Su-Su [2 ,3 ]
Shang, Wen-Bin [2 ,3 ]
Zhu, Yu-Shan [2 ,3 ]
Peng, Xue-Rong [2 ,3 ]
Zou, Cheng [2 ,3 ]
Zhang, Xuan [2 ,3 ]
机构
[1] Peoples Hosp ChuXiong Yi Autonomous Prefecture, Chuxiong, Peoples R China
[2] Kunming Med Univ, Coll Modern Biomed Ind, Sch Pharmaceut Sci at Prod, Kunming, Peoples R China
[3] Kunming Med Univ, Coll Modern Biomed Ind, Yunnan Key Lab Pharmacol Nat Prod, Kunming, Peoples R China
[4] Kunming Med Univ, Affiliated Hosp 1, Dept Pathol, Kunming, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
基金
中国国家自然科学基金;
关键词
NF-KAPPA-B; P38; MAPK; LUNG FIBROSIS; ACTIVATION; DIFFERENTIATION; INFLAMMATION; MECHANISMS; PROLIFERATION; MODEL;
D O I
10.1371/journal.pone.0309833
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by inflammation and fibrotic changes, with an unknown cause. In the early stages of PF, severe inflammation leads to the destruction of lung tissue, followed by upregulation of fibrotic factors like Transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF), which disrupt normal tissue repair. Geniposide, a natural iridoid glycoside primarily derived from the fruits of Gardenia jasminoides Ellis, possesses various pharmacological activities, including liver protection, choleretic effects, and anti-inflammatory properties. In this study, we investigated the effects of Geniposide on chronic inflammation and fibrosis induced by bleomycin (BLM) in mice with pulmonary fibrosis (PF). PF was induced by intratracheal instillation of bleomycin, and Geniposide(100/50/25mg center dot kg-1) was orally administered to the mice once a day until euthanasia(14 day/28 day). The Raw264.7 cell inflammation induced by LPS was used to evaluate the effect of Geniposide on the activation of macrophage. Our results demonstrated that Geniposide reduced lung coefficients, decreased the content of Hydroxyproline, and improved pathological changes in lung tissue. It also reduced the number of inflammatory cells and levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) of bleomycin-induced PF mice. At the molecular level, Geniposide significantly down-regulated the expression of TGF-beta 1, Smad2/3, p38, and CTGF in lung tissues of PF mice induced by bleomycin. Molecular docking results revealed that Geniposide exhibited good binding activity with TGF-beta 1, Smad2, Smad3, and p38. In vitro study showed Geniposide directly inhibited the activation of macrophage induced by LPS. In conclusion, our findings suggest that Geniposide can ameliorate bleomycin-induced pulmonary fibrosis in mice by inhibiting the TGF-beta/Smad and p38MAPK signaling pathways.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Yangyin Yiqi Mixture Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats through Inhibiting TGF-1/Smad Pathway and Epithelial to Mesenchymal Transition
    Meng, Lihong
    Zhang, Xiaomei
    Wang, Hong
    Dong, Huan
    Gu, Xiaofeng
    Yu, Xiaolin
    Liu, Yushan
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2019, 2019
  • [32] Hyperbaric Oxygen Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice
    Yuan, Yuan
    Li, Yali
    Qiao, Guoqiang
    Zhou, Yilu
    Xu, Zijian
    Hill, Charlotte
    Jiang, Zhenglin
    Wang, Yihua
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [33] Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition
    Zhou, Yan
    He, Zhong
    Gao, Yuan
    Zheng, Rui
    Zhang, Xiaoye
    Zhao, Li
    Tan, Mingqi
    FRONTIERS IN PHARMACOLOGY, 2016, 7
  • [34] Anlotinib attenuated bleomycin-induced pulmonary fibrosis via the TGF-β1 signalling pathway
    Ruan, Hao
    Lv, Ziwei
    Liu, Shuaishuai
    Zhang, Liang
    Huang, Kai
    Gao, Shaoyan
    Gan, Wenhua
    Liu, Xiaowei
    Zhang, Shanshan
    Helian, Kaiyue
    Li, Xiaohe
    Zhou, Honggang
    Yang, Cheng
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2020, 72 (01) : 44 - 55
  • [35] Total alkaloids of bulbus of Fritillaria cirrhosa alleviate bleomycin-induced inflammation and pulmonary fibrosis in rats by inhibiting TGF-β and NF-κB signaling pathway
    Pai, Mingxin
    Er-bu, A. G. A.
    Wu, Yexin
    Ming, Tse Wai
    Gaun, Tse Kathy Wai
    Ye, Bengui
    FOOD & NUTRITION RESEARCH, 2023, 67
  • [36] Kangfuxin Oral Liquid Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF-β1/Smad Pathway
    Yao, Huan
    Wei, Shujun
    Xiang, Yongjing
    Wu, Ziqiang
    Liu, Weiwei
    Wang, Baojia
    Li, Xueping
    Xu, Huan
    Zhao, Juan
    Gao, Yongxiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2019, 2019
  • [37] Dehydrocostus lactone inhibits BLM-induced pulmonary fibrosis and inflammation in mice via the JNK and p38 MAPK-mediated NF-κB signaling pathways
    Xiong, Yue
    Cui, Xiaochuan
    Zhou, Yanjun
    Chai, Gaoshang
    Jiang, Xiufeng
    Ge, Guizhi
    Wang, Yue
    Sun, Hongxu
    Che, Huilian
    Nie, Yunjuan
    Zhao, Peng
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 98
  • [38] Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice
    Washimkar, Kaveri R.
    Tomar, Manendra Singh
    Kulkarni, Chirag
    Verma, Shobhit
    Shrivastava, Ashutosh
    Chattopadhyay, Naibedya
    Mugale, Madhav Nilakanth
    LIFE SCIENCES, 2023, 331
  • [39] All-transretinoic acid ameliorates bleomycin-induced lung fibrosis by downregulating the TGF-β1/Smad3 signaling pathway in rats
    Song, Xiaodong
    Liu, Weili
    Xie, Shuyang
    Wang, Meirong
    Cao, Guohong
    Mao, Cuiping
    Lv, Changjun
    LABORATORY INVESTIGATION, 2013, 93 (11) : 1219 - 1231
  • [40] Geniposide improves bleomycin-induced pulmonary fibrosis by inhibiting NLRP3 inflammasome activation and modulating metabolism
    Wei, Yi
    Liu, Chao
    Li, Lujia
    JOURNAL OF FUNCTIONAL FOODS, 2023, 104