Geniposide ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β/Smad and p38MAPK signaling pathways

被引:1
|
作者
Yin, Jian-Bin [1 ,2 ,3 ]
Wang, Ying-Xia [4 ]
Fan, Su-Su [2 ,3 ]
Shang, Wen-Bin [2 ,3 ]
Zhu, Yu-Shan [2 ,3 ]
Peng, Xue-Rong [2 ,3 ]
Zou, Cheng [2 ,3 ]
Zhang, Xuan [2 ,3 ]
机构
[1] Peoples Hosp ChuXiong Yi Autonomous Prefecture, Chuxiong, Peoples R China
[2] Kunming Med Univ, Coll Modern Biomed Ind, Sch Pharmaceut Sci at Prod, Kunming, Peoples R China
[3] Kunming Med Univ, Coll Modern Biomed Ind, Yunnan Key Lab Pharmacol Nat Prod, Kunming, Peoples R China
[4] Kunming Med Univ, Affiliated Hosp 1, Dept Pathol, Kunming, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
基金
中国国家自然科学基金;
关键词
NF-KAPPA-B; P38; MAPK; LUNG FIBROSIS; ACTIVATION; DIFFERENTIATION; INFLAMMATION; MECHANISMS; PROLIFERATION; MODEL;
D O I
10.1371/journal.pone.0309833
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by inflammation and fibrotic changes, with an unknown cause. In the early stages of PF, severe inflammation leads to the destruction of lung tissue, followed by upregulation of fibrotic factors like Transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF), which disrupt normal tissue repair. Geniposide, a natural iridoid glycoside primarily derived from the fruits of Gardenia jasminoides Ellis, possesses various pharmacological activities, including liver protection, choleretic effects, and anti-inflammatory properties. In this study, we investigated the effects of Geniposide on chronic inflammation and fibrosis induced by bleomycin (BLM) in mice with pulmonary fibrosis (PF). PF was induced by intratracheal instillation of bleomycin, and Geniposide(100/50/25mg center dot kg-1) was orally administered to the mice once a day until euthanasia(14 day/28 day). The Raw264.7 cell inflammation induced by LPS was used to evaluate the effect of Geniposide on the activation of macrophage. Our results demonstrated that Geniposide reduced lung coefficients, decreased the content of Hydroxyproline, and improved pathological changes in lung tissue. It also reduced the number of inflammatory cells and levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) of bleomycin-induced PF mice. At the molecular level, Geniposide significantly down-regulated the expression of TGF-beta 1, Smad2/3, p38, and CTGF in lung tissues of PF mice induced by bleomycin. Molecular docking results revealed that Geniposide exhibited good binding activity with TGF-beta 1, Smad2, Smad3, and p38. In vitro study showed Geniposide directly inhibited the activation of macrophage induced by LPS. In conclusion, our findings suggest that Geniposide can ameliorate bleomycin-induced pulmonary fibrosis in mice by inhibiting the TGF-beta/Smad and p38MAPK signaling pathways.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Metformin ameliorates bleomycin-induced pulmonary fibrosis in mice by suppressing IGF-1
    Xiao, Huijuan
    Huang, Xiaoxi
    Wang, Shiyao
    Liu, Zheng
    Dong, Run
    Song, Dingyun
    Dai, Huaping
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2020, 12 (03): : 940 - 949
  • [22] Gentiopicroside ameliorates bleomycin-induced pulmonary fibrosis in mice via inhibiting inflammatory and fibrotic process
    Chen, Cheng
    Wang, Yong-yan
    Wang, Ying-xia
    Cheng, Meng-qun
    Yin, Jian-bing
    Zhang, Xuan
    Hong, Zhi-peng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (04) : 2396 - 2403
  • [23] Curdione ameliorates bleomycin-induced pulmonary fibrosis by repressing TGF-β-induced fibroblast to myofibroblast differentiation
    Liu, Peng
    Miao, Kang
    Zhang, Lei
    Mou, Yong
    Xu, Yongjian
    Xiong, Weining
    Yu, Jun
    Wang, Yi
    RESPIRATORY RESEARCH, 2020, 21 (01)
  • [24] Soluble epoxide hydrolase inhibitor AUDA decreases bleomycin-induced pulmonary toxicity in mice by inhibiting the p38/Smad3 pathways
    Dong, Xin-wei
    Jia, Yong-liang
    Ge, Ling-tian
    Jiang, Bo
    Jiang, Jun-xia
    Shen, Jian
    Jin, Ya-chao
    Guan, Yan
    Sun, Yun
    Xie, Qiang-min
    TOXICOLOGY, 2017, 389 : 31 - 41
  • [25] Chrysophanol ameliorates renal interstitial fibrosis by inhibiting the TGF-β/Smad signaling pathway
    Dou, Fang
    Ding, Yi
    Wang, Cheng
    Duan, Jialin
    Wang, Wenjun
    Xu, Hang
    Zhao, Xian
    Wang, Jingwen
    Wen, Aidong
    BIOCHEMICAL PHARMACOLOGY, 2020, 180
  • [26] Deglycosylated Azithromycin Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF-β1 Signaling Pathway
    Ruan, Hao
    Gao, Shaoyan
    Li, Shuangling
    Luan, Jiaoyan
    Jiang, Qiuyan
    Li, Xiaohe
    Yin, Huijun
    Zhou, Honggang
    Yang, Cheng
    MOLECULES, 2021, 26 (09):
  • [27] TGF-β1 Stimulates Mouse Macrophages to Express APRIL through Smad and p38MAPK/CREB Pathways
    Jang, Young-Saeng
    Kim, Jae-Hee
    Seo, Goo-Young
    Kim, Pyeung-Hyeun
    MOLECULES AND CELLS, 2011, 32 (03) : 251 - 255
  • [28] Silymarin ameliorates peritoneal fibrosis by inhibiting the TGF-β/Smad signaling pathway
    Bai, Yingwen
    Wang, Lulu
    Yang, Ting
    Wang, Lingyun
    Ge, Weihong
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2023, 396 (10) : 2379 - 2391
  • [29] Deficiency of HtrA3 Attenuates Bleomycin-Induced Pulmonary Fibrosis Via TGF-β1/Smad Signaling Pathway
    Li, Guirong
    Shen, Chenyou
    Wei, Dong
    Yang, Xusheng
    Jiang, Cheng
    Yang, Xiucheng
    Mao, Wenjun
    Zou, Jian
    Tan, Jianxin
    Chen, Jingyu
    LUNG, 2023, 201 (02) : 235 - 242
  • [30] Silencing FHL2 inhibits bleomycin-induced pulmonary fibrosis through the TGF-β1/Smad signaling pathway
    Shi, Mengkun
    Cui, Huixia
    Shi, Jialun
    Mei, Yunqing
    EXPERIMENTAL CELL RESEARCH, 2023, 423 (02)