All-optical perception based on partially coherent optical neural networks

被引:1
|
作者
Chen, Rui [1 ,2 ,3 ]
Ma, Yijun [1 ,2 ,3 ]
Zhang, Chuang [1 ,2 ,3 ]
Xu, Wenjun [1 ,3 ]
Wang, Zhong [1 ,2 ,3 ]
Sun, Shengli [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China
来源
OPTICS EXPRESS | 2025年 / 33卷 / 02期
关键词
D O I
10.1364/OE.540382
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the field of image processing, optical neural networks offer advantages such as high speed, high throughput, and low energy consumption. However, most existing coherent optical neural networks (CONN) rely on coherent light sources to establish transmission models. The use of laser inputs and electro-optic modulation devices at the front end of these neural networks diminishes their computational capability and energy efficiency, thereby limiting their practical applications in object detection tasks. This paper proposes a partially coherent optical neural network (PCONN) transmission model based on mutual intensity modulation. This model does not depend on coherent light source inputs or active electro-optic modulation devices, allowing it to directly compute and infer using natural light after simple filtering, thus achieving full optical perception from light signal acquisition to computation and inference. Simulation results indicate that the model achieves a highest classification accuracy of 96.80% and 86.77% on the MNIST and Fashion-MNIST datasets, respectively. In a binary classification simulation test based on the ISDD segmentation dataset, the model attained an accuracy of 94.69%. It is estimated that this system's computational inference speed for object detection tasks is 100 times faster than that of traditional CONN, with energy efficiency approximately 50 times greater. In summary, our proposed PCONN model addresses the limitations of conventional optical neural networks in coherent light environments and is anticipated to find applications in practical object detection scenarios. (c) 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1609 / 1624
页数:16
相关论文
共 50 条
  • [31] A Shared Synapse Architecture for All-Optical Spiking Neural Networks
    Eslaminia, Milad
    Le Beux, Sebastien
    2023 21ST IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS, 2023,
  • [32] Ultrafast metamaterial all-optical switching based on coherent modulation
    Wang, Tianrang
    Tang, Jian
    Chen, Ming
    Xiong, Jianfeng
    Wang, Hexuan
    Xu, Jie
    Qu, Shiliang
    Cheng, Yu
    Yuan, Libo
    OPTICS EXPRESS, 2022, 30 (06) : 9284 - 9297
  • [33] All-optical nonlinear activation function for photonic neural networks
    Miscuglio, Mario
    Mehrabian, Armin
    Hu, Zibo
    Azzam, Shaimaa, I
    George, Jonathan
    Kildishev, Alexander, V
    Pelton, Matthew
    Sorger, Volker J.
    OPTICAL MATERIALS EXPRESS, 2018, 8 (12): : 3851 - 3863
  • [34] An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
    Sumon, Md Saiful Islam
    Crisan, Mihai
    You, Weicheng
    Sankar, Shrivatch
    Faruque, Imad I.
    Dwivedi, Sarvagya
    Arafin, Shamsul
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [35] Design of a Reconfigurable Activation Function for All-Optical Neural Networks
    Destras, Oceane
    Le Beux, Sebastien
    de Magalhaes, Felipe Gohring
    Nicolescu, Gabriela
    2024 22ND IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS 2024, 2024, : 313 - 317
  • [36] All-optical fiber optic coherent amplifier
    A. Goodarzi
    M. Ghanaatshoar
    M. Mozafari
    Scientific Reports, 8
  • [37] All-optical processing in coherent nonlinear spectroscopy
    Oron, D
    Dudovich, N
    Silberberg, Y
    PHYSICAL REVIEW A, 2004, 70 (02): : 023415 - 1
  • [38] All-optical fiber optic coherent amplifier
    Goodarzi, A.
    Ghanaatshoar, M.
    Mozafari, M.
    SCIENTIFIC REPORTS, 2018, 8
  • [39] Ring-based All-Optical Datacenter Networks
    Fagertun, Anna M.
    Berger, Michael
    Ruepp, Sarah
    Kamchevska, Valerija
    Galili, Michael
    Oxenlowe, Leif K.
    Dittmann, Lars
    ECOC 2015 41ST EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, 2015,
  • [40] All-optical probe of coherent spin waves
    van Kampen, M
    Jozsa, C
    Kohlhepp, JT
    LeClair, P
    Lagae, L
    de Jonge, WJM
    Koopmans, B
    PHYSICAL REVIEW LETTERS, 2002, 88 (22) : 227201/1 - 227201/4