MSTF: Multiscale Transformer for Incomplete Trajectory Prediction

被引:0
作者
Liu, Zhanwen [1 ]
Li, Chao [1 ]
Yang, Nan [1 ]
Wang, Yang [1 ]
Ma, Jiaqi [2 ,3 ]
Cheng, Guangliang [4 ]
Zhao, Xiangmo [1 ]
机构
[1] Changan Univ, Dept Informat Engn, Xian 710018, Shaanxi, Peoples R China
[2] Univ Calif Los Angeles UCLA, UCLA Mobil Lab, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles UCLA, FHWA Ctr Excellence New Mobil & Automated Vehicl, Los Angeles, CA 90095 USA
[4] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, England
来源
2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024 | 2024年
基金
中国国家自然科学基金;
关键词
NETWORK;
D O I
10.1109/IV55156.2024.10588771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motion forecasting plays a pivotal role in autonomous driving systems, enabling vehicles to execute collision warnings and rational local-path planning based on predictions of the surrounding vehicles. However, prevalent methods often assume complete observed trajectories, neglecting the potential impact of missing values induced by object occlusion, scope limitation, and sensor failures. Such oversights inevitably compromise the accuracy of trajectory predictions. To tackle this challenge, we propose an end-to-end framework, termed Multi-scale Transformer (MSTF), meticulously crafted for incomplete trajectory prediction. MSTF integrates a Multiscale Attention Head (MAH) and an Information Increment-based Pattern Adaptive (IIPA) module. Specifically, the MAH component concurrently captures multiscale motion representation of trajectory sequence from various temporal granularities, utilizing a multi-head attention mechanism. This approach facilitates the modeling of global dependencies in motion across different scales, thereby mitigating the adverse effects of missing values. Additionally, the IIPA module adaptively extracts continuity representation of motion across time steps by analyzing missing patterns in the data. The continuity representation delineates motion trend at a higher level, guiding MSTF to generate predictions consistent with motion continuity. We evaluate our proposed MSTF model using two large-scale real-world datasets. Experimental results demonstrate that MSTF surpasses state-of-the-art (SOTA) models in the task of incomplete trajectory prediction, showcasing its efficacy in addressing the challenges posed by missing values in motion forecasting for autonomous driving systems.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 38 条
[31]  
Qian Y., 2023, IEEE Open Journal of Intelligent Transportation Systems
[32]   Financial time series forecasting with deep learning : A systematic literature review: 2005-2019 [J].
Sezer, Omer Berat ;
Gudelek, Mehmet Ugur ;
Ozbayoglu, Ahmet Murat .
APPLIED SOFT COMPUTING, 2020, 90
[33]   RSG-GCN: Predicting Semantic Relationships in Urban Traffic Scene With Map Geometric Prior [J].
Tian, Yafu ;
Carballo, Alexander ;
Li, Ruifeng ;
Takeda, Kazuya .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 :244-260
[34]   Robust Perception and Visual Understanding of Traffic Signs in the Wild [J].
Valiente, Rodolfo ;
Chan, Darren ;
Perry, Alan ;
Lampkins, Joshua ;
Strelnikoff, Sasha ;
Xu, Jiejun ;
Ashari, Alireza Esna .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 :611-625
[35]  
Vaswani A, 2017, ADV NEUR IN, V30
[36]   Lane Transformer: A High-Efficiency Trajectory Prediction Model [J].
Wang, Zhibo ;
Guo, Jiayu ;
Hu, Zhengming ;
Zhang, Haiqiang ;
Zhang, Junping ;
Pu, Jian .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 :2-13
[37]  
Wu YN, 2023, Arxiv, DOI arXiv:2305.08190
[38]  
Yi JY, 2020, Arxiv, DOI arXiv:1906.00150